





所属成套资源:高一上学期期末数学培优对点题组专题突破(人教A版2019必修第一册)
- 专题26 对数函数-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题27 对数函数的图像和性质(一)-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题29 函数的应用-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题30 用二分法求方程的近似解-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题31 建立函数模型解决实际问题-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
专题28 对数函数的图像和性质(二)-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册)
展开
这是一份专题28 对数函数的图像和性质(二)-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题28对数函数的图像和性质二解析版docx、专题28对数函数的图像和性质二原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
专题28对数函数的图像和性质(二)考点1函数的反函数1.函数y=lnx+1(x>0)的反函数为( )A.y=ex+1(x∈R)B.y=ex-1(x∈R)C.y=ex+1(x>1)D.y=ex-1(x>1)【答案】B【解析】由y=lnx+1,得x=ey-1.又因为函数y=lnx+1的值域为R,于是y=lnx+1的反函数为y=ex-1(x∈R).故选B.2.函数f(x)=(x-1)2+1(x<1)的反函数为( )A.f-1(x)=1+(x>1)B.f-1(x)=1-(x>1)C.f-1(x)=1+(x≥1)D.f-1(x)=1-(x≥1)【答案】B【解析】∵x<1⇒y=(x-1)2+1,∴(x-1)2=y-1⇒x-1=-,∴反函数为f-1(x)=1-(x>1).3.已知指数函数f(x)=ax(a>0,a≠1),f(x)的反函数记为y=g(x),且g(x)过点(4,2),则f(x)的解析式是( )A.f(x)=log4xB.f(x)=log2xC.f(x)=2xD.f(x)=4x【答案】C【解析】指数函数的解析式为:f(x)=ax(a>0,a≠1),∵f(x)的反函数记为y=g(x)函数的图象经过(4,2)点,∴f(x)的图象经过(2,4)点,∴4=a2,a=2,∴指数函数的解析式为y=2x.故选C.4.已知函数f(x)的反函数为g(x)=log2x+1,则f(2)+g(2)等于( )A.1B.2C.3D.4【答案】D【解析】因为函数f(x)的反函数为g(x)=log2x+1,所以f(2)+g(2)=f(2)+2.而根据反函数的图象与性质可知f(2)=2,因此选D.5.函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则函数y=f(4x-x2)的递增区间是________.【答案】(0,2)【解析】∵函数y=f(x)的图象与y=2x的图象关于直线y=x对称,∴y=f(x)与y=2x互为反函数,∵y=2x的反函数为y=log2x,∴f(x)=log2x,f(4x-x2)=log2(4x-x2).令t=4x-x2,则t>0,即4x-x2>0,∴x∈(0,4),又∵t=4x-x2的对称轴为x=2,且对数的底数大于1,∴y=f(4x-x2)的递增区间为(0,2).6.设f-1(x)为f(x)=2x-2+,x∈[0,2]的反函数,则y=f(x)+f-1(x)的最大值为________.【答案】4【解析】由题意得:f(x)在[0,2]上单调递增,值域为[,2],所以f-1(x)在[,2]上单调递增,因此y=f(x)+f-1(x)在[,2]上单调递增,其最大值为f(2)+f-1(2)=2+2=4. 考点2 指数函数和对数函数的关系7.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A.B.C.2D.4【答案】B【解析】函数f(x)=ax+loga(x+1),令y1=ax,y2=loga(x+1),显然在[0,1]上,y1=ax与y2=loga(x+1)同增或同减.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+loga2+1+0=a,解得a=.8.设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a等于( )A.-1B.1C.2D.4【答案】C【解析】设(x,y)是函数y=f(x)的图象上任意一点,它关于直线y=-x对称点为(-y,-x),由已知知(-y,-x)在函数y=2x+a的图象上,∴-x=2-y+a,解得y=-log2(-x)+a,即f(x)=-log2(-x)+a,∴f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2.9.方程log2x+log2(x-1)=1的解集为M,方程22x+1-9·2x+4=0的解集为N,那么M与N的关系是( )A.M=NB.MNC.MND.M∩N=∅【答案】B【解析】由log2x+log2(x-1)=1,得x(x-1)=2,解得x=-1(舍)或x=2,故M={2};由22x+1-9·2x+4=0,得2·(2x)2-9·2x+4=0,解得2x=4或2x=,即x=2或x=-1,故N={2,-1},因此有MN. 考点3对数不等式10.已知函数f(x)=若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)【答案】C【解析】①当a>0时,f(a)=log2a,f(-a)=,f(a)>f(-a),即log2a>=log2,∴a>,解得a>1.②当a<0时,f(a)=,f(-a)=log2(-a),f(a)>f(-a),即>log2(-a)=,∴-a<,解得-1<a<0,由①②得-1<a<0或a>1.11.若函数f(x)=x2lga-2x+1的图象与x轴有两个交点,则实数a的取值范围是( )A.0<a<10B.1<a<10C.0<a<1D.0<a<1或1<a<10【答案】D【解析】lga≠0且Δ=4-4lga>0,解得0<a<1或1<a<10,故选D.12.已知集合A={x|x2≥1,x∈R},B={x|log2x<2,x∈R},则∁RA∩B等于( )A.[0,1]B.(0,1)C.(-3,1)D.[-3,1]【答案】B【解析】集合A={x|x2≥1,x∈R}={x|x≥1,或x≤-1},B={x|log2x<2,x∈R}={x|0<x<4},∴∁RA=(-1,1),∴∁RA∩B=(0,1),故选B.13.已知函数f(x)=loga(x-1)(a>0,且a≠1),g(x)=loga(3-x)(a>0,且a≠1).(1)求函数h(x)=f(x)-g(x)的定义域;(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.【答案】(1)要使函数h(x)=f(x)-g(x)=loga(x-1)-loga(3-x)有意义,需有解得1<x<3,故函数h(x)=f(x)-g(x)的定义域为(1,3).(2)因为不等式f(x)≥g(x),即loga(x-1)≥loga(3-x),当a>1时,有解得2≤x<3.当0<a<1时,有解得1<x≤2.综上可得,当a>1时,不等式f(x)≥g(x)中x的取值范围为[2,3);当0<a<1时,不等式f(x)≥g(x)中x的取值范围为(1,2].14.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值;(2)求使f(x)-g(x)>0的x的取值范围.【答案】(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即loga(1+x)>loga(1-x),①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0. 考点4 建立函数模型解决实际问题15.下列函数关系中,可以看成是指数型函数y=kax(k∈R,a>0且a≠1)模型的是( )A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)B.我国人口年自然增长率为1%,我国人口总数随年份的变化关系C.如果某人ts内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系D.信件的邮资与其重量间的函数关系【答案】B【解析】A:竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系,是二次函数关系;B:我国人口年自然增长率为1%,我国人口总数随年份的变化关系,是指数型函数关系;C:如果某人ts内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系,是反比例函数关系;D:信件的邮资与其重量间的函数关系,是正比例函数关系.故选B.16.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为如图所示的( )A.B.C.D.【答案】D【解析】设原来森林蓄积量是a,则a(1+10.4%)y=ax,1.104y=x,所以y=log1.104x,故选D.17.如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3则有t1+t2=t3;其中正确的说法有________.(请把正确的说法的序号都填在横线上)【答案】①②④【解析】∵其关系为指数函数,图象过(4,16)点,∴指数函数的底数为2,故①正确;当t=5时,s=32>30,故②正确;4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;∵t1=1,t2=log23,t3=log26,∴有t1+t2=t3,故④正确.综上可知,①②④正确.故答案为①②④.18.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】因为a′=a·e-kt,即=e-kt.两边取对数,得lg=-ktlge.①又知14C的半衰期是5570年,即当t=5570时,=.故lg=-5570klge,即klge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.19.诺贝尔奖发放方式为:每年一次,把资金总额平均分成6份,奖励在6个领域(物理学、化学、文学、经济学、医学或生理学、和平事业)为人类作出最有益贡献的人,每年发放奖金总金额是基金在该年度所获利息的一半,另一半利息用于基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%,资料显示:1999年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示为第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依此类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.03129≈1.32,1.031210≈1.36)【答案】(1)由题意知f(2)=f(1)(1+6.24%)-f(1)×6.24%=f(1)×(1+3.12%),f(3)=f(2)(1+6.4%)-f(2)×6.24%=f(1)(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9≈26107(万美元).2009年诺贝尔奖各项金额为×f(10)×6.24%≈136(万美元),与150万美元相比少了约14万美元.故该新闻是假的.20.某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市的人口总数y(万人)与年份x(年)的函数解析式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年后该城市人口总数将达到120万人.(精确到1年)[参考数据:(1+1.2%)10≈1.127,(1+1.2%)15≈1.196,(1+1.2%)16≈1.210]【答案】(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%);2年后该城市人口总数为y=100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;3年后该城市人口总数为y=100(1+1.2%)3…故x年后该城市人口总数为y=100(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万人).(3)令y=120,则有100(1+1.2%)x=120,解得x≈16.即大约16年后该城市人口总数将达到120万人.
相关试卷
这是一份专题38 正切函数的图像和性质-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题38正切函数的图像和性质解析版docx、专题38正切函数的图像和性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份专题27 对数函数的图像和性质(一)-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题27对数函数的图像和性质一解析版doc、专题27对数函数的图像和性质一原卷版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份专题26 对数函数-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题26对数函数解析版doc、专题26对数函数原卷版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
