- 10.1随机事件与概率(基础练,含解析)-【新教材】2021-2022学年人教A版(2019)高中数学必修第二册 试卷 1 次下载
- 10.1随机事件与概率(提升练,含解析)-【新教材】2021-2022学年人教A版(2019)高中数学必修第二册 试卷 0 次下载
- 10.2事件的相互独立性(基础练,含解析)-【新教材】2021-2022学年人教A版(2019)高中数学必修第二册 试卷 1 次下载
- 10.3频率与概率(基础练,含解析)-【新教材】2021-2022学年人教A版(2019)高中数学必修第二册 试卷 0 次下载
- 10.3频率与概率(提升练,含解析)-【新教材】2021-2022学年人教A版(2019)高中数学必修第二册 试卷 0 次下载
高中数学人教A版 (2019)必修 第二册10.2 事件的相互独立性练习
展开第十章 概率
10.2事件的相互独立性(提升练)
一、单选题(共5小题,满分25分,每小题5分)
1.甲、乙、丙三人独立地去译一个密码,译出的概率分别,,,则此密码能被译出的概率是( )
A. B. C. D.
2.已知事件,,且,,则下列结论正确的是( )
A.如果,那么,
B.如果与互斥,那么,0.3
C.如果与相互独立,那么,
D.如果与相互独立,那么,
3.排球比赛的规则是5局3胜制局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为,前2局中乙队以领先,则最后乙队获胜的概率是( )
A. B. C. D.
4.甲、乙两人同时向同一目标射击一次,已知甲命中目标概率0.6,乙命中目标概率0.5,假设甲、乙两人射击命中率互不影响.射击完毕后,获知目标至少被命中一次,则甲命中目标概率为( )
A.0.8 B.0.75
C.0.6 D.0.48
5.如图,已知电路中3个开关闭合的概率都是,且是相互独立的,则灯亮的概率为( )
A. B. C. D.
二、多选题(共3小题,满分15分,每小题5分,少选得3分,多选不得分)
6.下列各对事件中,为相互独立事件的是( )
A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”
B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”
C.袋中有3白、2黑共5个大小相同的小球,依次不放同地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”
D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”
7.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以,表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B表示从乙罐中取出的球是红球的事件,下列命题正确的是( )
A. B.事件B与事件相互独立
C.事件B与事件相互独立 D.,互斥
8.分别抛掷两枚质地均匀的骰子(六个面上的点数分别为1,2,3,4,5,6),设事件“第一枚骰子的点数为奇数”,事件“第二枚骰子的点数为偶数”,则( )
A.M与N互斥 B.M与N不对立
C.M与N相互独立 D.
三、填空题(共3小题,满分15分,每小题5分,一题两空,第一空2分)
9.已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为___________;甲、乙两球至少有一个落入盒子的概率为___________.
10.甲乙两人进行乒乓球比赛,约定先连胜两局者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛相互独立,则恰好进行了4局结束比赛的概率为___________.
11.某大型工程遇到一个技术难题,工程总部将这个问题分别让甲研究所和乙研究所进行独立研究,已知甲研究所独立研究并解决这个问题的概率为0.6,乙研究所独立研究并解决这个问题的概率为0.7,这个技术难题最终能被解决的概率为___________.
四、解答题:(本题共3小题,共45分。解答应写出文字说明、证明过程或演算步骤。)
12.甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率:
(Ⅰ)两人都投中;
(Ⅱ)恰好有一人投中;
(Ⅲ)至少有一人投中.
13.为普及抗疫知识、弘扬抗疫精神,某学校组织防疫知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为,;在第二轮比赛中,甲、乙胜出的概率分别为,.甲、乙两人在每轮比赛中是否胜出互不影响.
(1)从甲、乙两人中选取1人参加比赛,派谁参赛赢得比赛的概率更大?
(2)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.
14.习近平总书记指出:“要健全社会心理服务体系和疏导机制、危机干预机制,塑造自尊自信、理性平和、亲善友爱的社会心态.”在2020年新冠肺炎疫情防控阻击战中,心理医生的相关心理疏导起到了重要作用.某心理调查机构为了解市民在疫情期的心理健康状况,随机抽取位市民进行心理健康问卷调查,按所得评分(满分分)从低到高将心理健康状况分为四个等级:
调查评分 | ||||||
心理等级 | 有隐患 | 一般 | 良好 | 优秀 |
并绘制如图所示的频率分布直方图.已知调查评分在的市民为人.
(1)求的值及频率分布直方图中的值;
(2)在抽取的心理等级为“有隐患”的市民中,按照调查评分分层抽取人,进行心理疏导.据以往数据统计,经过心理疏导后,调查评分在的市民心理等级转为 “良好”的概率为,调查评分在的市民心理等级转为“良好”的概率为,若经过心理疏导后的恢复情况相互独立,试问在抽取的人中,经过心理疏导后,至少有一人心理等级转为“良好”的概率为多少?
(3)心理调查机构与该市管理部门设定的预案是:以抽取的样本作为参考,若市民心理健康指数平均值不低于则只需发放心理指导资料,否则需要举办心理健康大讲堂.根据你所学的统计知识,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组数据以区间的中点值代替,心理健康指数=(问卷调查评分/100)
人教A版 (2019)必修 第二册10.2 事件的相互独立性课时作业: 这是一份人教A版 (2019)必修 第二册10.2 事件的相互独立性课时作业,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学第十章 概率10.2 事件的相互独立性精品同步测试题: 这是一份数学第十章 概率10.2 事件的相互独立性精品同步测试题,共8页。试卷主要包含了2 事件的相互独立性等内容,欢迎下载使用。
人教A版 (2019)必修 第二册10.2 事件的相互独立性当堂检测题: 这是一份人教A版 (2019)必修 第二册10.2 事件的相互独立性当堂检测题,共7页。试卷主要包含了某次知识竞赛规则如下,下列事件A,B不是独立事件的是等内容,欢迎下载使用。