2021年宁夏银川市永宁县九年级一模数学试题(word版含答案)
展开九年级第一次联考数学试题
注意事项:
1.考试时间120分钟,全卷总分120分.
2.答题前将密封线内的项目填写清楚.
3.答卷一律使用黑、蓝钢笔或圆珠笔.
4. 答卷不允许使用计算器
总分 | 一 | 二 | 三 | 四 | 复核人 |
|
|
|
|
|
|
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)
1.-27的立方根是( )
A.3 B. C.9 D.
2.下列运算正确的是( )
A.=±4 B.2a+3b=5ab C.(x-3)2=x2-9 D.(-)2=
3.下列图形中,既是轴对称图形又是中心对称图形的有( )
A.4个 B.3个 C.2个 D.1个
4.函数中,自变量的取值范围是( )
A. B. C. D.
5.用配方法解方程时,原方程应变形为( )
A. B.
C. D.
6.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( )
A.0.1 B.0.17 C.0.33 D.0.4
7.已知在中,,则的值为( )
A. B. C. D.
8.如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )
二、填空题(每小题3分,共24分)
9.计算:(—1)2009× .
10.宝岛台湾的面积约为36 000平方公里,用科学记数法表示约为 平方公里.
11.分解因式: .
12.在分别写有数字1、 2、 3、 4、 5的5张小卡片中,随机地抽出1张卡片,则抽出卡片上的数字是1的概率为 .
13.已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120°,则该圆锥的母线长等于 .
14.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为,根据题意列出的方程是 .
15.已知,⊙的半径为,⊙的半径为,且⊙与⊙相切,则这两圆的圆心距为__________ .
16.如图,在中,,与相切于点,且交于两点,则图中阴影部分的
面积是 (保留).
三、解答题(共24分)
17.(6分)计算:;
18.(6分)解不等式组:并在数轴上把解集表示出来.
19.(6分)如图所示,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限相交于点.过点分别作轴、轴的垂线,垂足为点、.如果四边形是正方形,求一次函数的关系式.
20.(6分)有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.
四、解答题(共48分)
21.(6分)2009年某市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形统计图.(另附:九年级女生立定跳远的计分标准)
成绩(cm) | 197 | 189 | 181 | 173 | … |
分值(分) | 10 | 9 | 8 | 7 | … |
(1)求这10名女生在本次测试中,立定跳远距离的极差和中位数,立定跳远得分的众数和平均数.
(2)请你估计该校选择立定跳远的200名女生中得满分的人数.
22.(6分)如图,一巡逻艇航行至海面处时,得知其正北方向上处一渔船发生故障.已知港口处在处的北偏西方向上,距处20海里;处在A处的北偏东方向上.
求之间的距离(结果精确到0.1海里).
(参考数据:
)
23.(8分)如图,在⊙O中,AB是直径,AD是弦,∠ADE = 60°,∠C = 30°.
(1)判断直线CD是否是⊙O的切线,并说明理由;
(2)若CD = ,求BC的长.
24.(8分)如图,抛物线与轴正半轴交于点,以为边在轴上方作正方形,延长交抛物线于点,再以为边向上作正方形.
(1)求的值.(2分)
(2)求点的坐标.(5分)
25.(10分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?
26.(10分)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动.
(1)直接写出两点的坐标;
(2)设点的运动时间为(秒),的面积为,求出与之间的函数关系式;
(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.
九年级第一次联考数学试卷参考答案
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
选项 | B | D | B | B | B | A | C | C |
二、填空题(每小题3分,共24分)
题号 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
答案 | 2 | 15 | 3200 (或 或) | 4或14 |
三、解答题(共24分)
17.(6分)
解:(1) 原式=-······················································(4分)
=-···············································(5分)
=-1;············································(6分)
18.(6分)
解:解不等式(1)得···················································(2分)
解不等式(2)得······················································(3分)
·············································(4分)
所以不等式组的解集为.················································(6分)
19.(6分)
解:依题意可得:······················································(1分)
又四边形为正方形,所以················································(2分)
所以有,····························································(3分)
直线过点,所以得
,··································································(4分)
所以································································(5分)
故有直线····························································(6分)
20.(6分)
解:(1)画树状图如下:
或列表如下:
幸运数 积 吉祥数 | 1 | 2 | 3 | 4 |
0 | 0 | 0 | 0 | 0 |
1 | 1 | 2 | 3 | 4 |
3 | 3 | 6 | 9 | 12 |
···································································(2分)
由图(表)知,所有等可能的结果有12种,其中积为0的有4种,
所以,积为0的概率为.·················································(3分)
(2)不公平.因为由图(表)知,积为奇数的有4种,积为偶数的有8种.
所以,积为奇数的概率为,积为偶数的概率为.·······························(4分)
因为,所以,该游戏不公平.·············································(5分)
游戏规则可修改为:
若这两个数的积为0,则小亮赢;积为奇数,则小红赢.·························(6分)
(只要正确即可)
四、解答题(48分)
21.(6分)
解:(1)立定跳远距离的极差.···········································1分
立定跳远距离的中位数. 2分
根据计分标准,这10名女生的跳远距离得分分值分别是:
7,9,10,10,10,8,10,10,9.
所以立定跳远得分的众数是10(分),·······································4分
立定跳远得分的平均数是9.3(分).········································5分
(2)因为10名女生中有6名得满分,所以估计200名女生中得满分的人数是(人).·····6分
22.(6分)
解:过点A作,垂足为D.························1分
在中,,,
∴.········································2分
.··········································3分
在中,,
∴··········································4分
(海里)·····························································5分
答:之间的距离约为21.6海里.············································6分
23.(8分)
(1)CD是⊙O的切线.··················································1分
证明:连接OD.
∵∠ADE=60°,∠C=30°,∴∠A=30°.·········································2分
∵OA=OD,∴∠ODA=∠A=30°.
∴∠ODE=∠ODA+∠ADE=30°+60°=90°,∴OD⊥CD.·····························3分
∴CD是⊙O的切线.·····················································4分
(2)解:在Rt△ODC中,∠ODC=90°, ∠C=30°, CD=.
∵tanC=,·····························································5分
∴OD=CD·tanC=×=3.····················································6分
∴OC=2OD =6.························································7分
∵OB=OD=3,∴BC=OC-OB=6-3=3.········································8分
24.(8分)
解:(1)把代入中,得.················································2分
(2),
.
四边形是正方形,
.
当时,,即.
解得,(舍去).······················································5分
.
在正方形中,.同理.
,
点的坐标为.··························································8分
25.(10分)
(1)解:设今年三月份甲种电脑每台售价元
····································································1分
解得:·······························································2分
经检验:是原方程的根,·················································3分
所以甲种电脑今年三月份每台售价4000元.
(2)设购进甲种电脑台,
····································································5分
解得·································································6分
因为的正整数解为6,7,8,9,10,所以共有5种进货方案························7分
(3)设总获利为元,
····································································8分
当时,(2)中所有方案获利相同.·········································9分
此时,购买甲种电脑6台,乙种电脑9台时对公司更有利.························10分
26.(10分)
解:(1)A(8,0)B(0,6)………………2分(各1分)
(2)
点由到的时间是(秒)
点的速度是(单位/秒………………3分
当在线段上运动(或0)时,
····································································4分
当在线段上运动(或)时,,
如图,作于点,由,得,·················································5分
····································································6分
(3)································································7分
···································································10分
注:本卷中各题,若有其它正确的解法,可酌情给分.
宁夏回族自治区银川市永宁县永宁三沙源上游学校2023-2024学年九年级上学期期末数学试题(原卷+解析): 这是一份宁夏回族自治区银川市永宁县永宁三沙源上游学校2023-2024学年九年级上学期期末数学试题(原卷+解析),文件包含精品解析宁夏回族自治区银川市永宁县永宁三沙源上游学校2023-2024学年九年级上学期期末数学试题原卷版docx、精品解析宁夏回族自治区银川市永宁县永宁三沙源上游学校2023-2024学年九年级上学期期末数学试题解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
宁夏回族自治区银川市永宁县永宁三沙源上游学校2023-2024学年九年级上学期期末数学试题(无答案): 这是一份宁夏回族自治区银川市永宁县永宁三沙源上游学校2023-2024学年九年级上学期期末数学试题(无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年宁夏回族自治区银川市兴庆区银川市第十五中学九年级一模数学试题(word版含答案): 这是一份2022年宁夏回族自治区银川市兴庆区银川市第十五中学九年级一模数学试题(word版含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。