终身会员
搜索
    上传资料 赚现金

    人教A版 必修 第二册 8.6.3平面与平面垂直(二)Word版含解析练习题

    立即下载
    加入资料篮
    人教A版 必修 第二册 8.6.3平面与平面垂直(二)Word版含解析练习题第1页
    人教A版 必修 第二册 8.6.3平面与平面垂直(二)Word版含解析练习题第2页
    人教A版 必修 第二册 8.6.3平面与平面垂直(二)Word版含解析练习题第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课后练习题

    展开

    这是一份人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课后练习题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


     

    温馨提示:

        此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。

    课时素养检测

    三十三 平面与平面垂直(二)

    (30分钟 60分)

    一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)

    1.若两个平面互相垂直,在第一个平面内的一条直线a垂直于第二个平面内的一条直线b,那么(  )

    A.直线a垂直于第二个平面

    B.直线b垂直于第一个平面

    C.直线a不一定垂直于第二个平面

    D.过a的平面必垂直于过b的平面

    【解析】C.直线a与直线b均不一定垂直两面的交线.

    2.如图所示,在长方体ABCD-A1B1C1D1的棱AB上任取一点F,作FE⊥A1B1于E,则EF与平面A1B1C1D1的关系是              (  )

    A.平行     B.EF平面A1B1C1D1

    C.相交但不垂直   D.相交且垂直

    【解析】D.由于长方体中平面ABB1A1平面A1B1C1D1,所以根据面面垂直的性质定理可知,EF与平面A1B1C1D1相交且垂直.

    3.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC一定是              (  )

    A.直角三角形   B.等腰三角形

    C.等边三角形   D.等腰直角三角形

    【解析】选A.过点A作AHBD于点H,由平面ABD平面BCD,得AH平面BCD,则AHBC.

    又DA平面ABC,所以BCAD,又因为AHAD=A,所以BC平面ABD,所以BCAB,即ABC一定为直角三角形.

    4.在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CC1(  )

    A.平行    B.共面

    C.垂直    D.不垂直

    【解析】C.如图所示,在四边形ABCD,

    因为AB=BC,AD=CD.所以BDAC.因为平面AA1C1C平面ABCD,

    平面AA1C1C平面ABCD=AC,BD平面ABCD,所以BD平面AA1C1C.

    又CC1平面AA1C1C,所以BDCC1.

    5.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是(  )

    A.若α⊥β,mα,nβ,则m⊥n

    B.若α∥β,mα,nβ,则m∥n

    C.若m⊥n,mα,nβ,则α⊥β

    D.若m⊥α,m∥n,n∥β,则α⊥β

    【解析】D.A,m,n可能为平行、垂直、异面直线;B,m,n可能为异面直线;C,m应与β中两条相交直线垂直时结论才成立.

    6.(多选题)如图所示,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.以下四个结论中正确的为              (  )

    A.PA∥平面MOB    B.MO∥平面PAC

    C.OC⊥平面PAC    D.平面PAC⊥平面PBC

    【解析】选BD.因为PA平面MOB,所以选项A不正确;

    因为MOPA,而且MO平面PAC,所以选项B正确;OC不垂直于AC,所以选项C不正确;

    因为BCAC,BCPA,ACPA=A,所以BC平面PAC,所以平面PAC平面PBC,所以选项D正确.

    二、填空题(每小题5分,共10分)

    7.在四面体ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M为AB中点,则线段CM的长为________. 

    【解析】如图所示,BD的中点O,连接OA,OC,

    因为AB=AD=BC=CD=1,所以OABD,OCBD.又平面ABD平面BCD,所以OA平面BCD,OAOC.又ABAD,所以DB=.

    取OB中点N,连接MN,CN,所以MNOA,MN平面BCD.

    因为CN2=ON2+OC2,所以CM==.

    答案:

    8.(双空题)在正方体ABCD-A1B1C1D1中,二面角C1-AB-D的大小为________;直线AC1与平面ABCD所成的角的正切值为________. 

    【解析】二面角C1-AB-D的平面角为∠C1BC=45°,由线面角的定义知直线AC1与平面ABCD所成的角为∠C1AC,故正切值为.

    答案:45° 

    三、解答题(每小题10分,共20分)

    9.如图,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.

    (1)求证:PA⊥平面ABC;

    (2)当E为△PBC的垂心时,求证:△ABC是直角三角形.

    【证明】(1)在平面ABC内任取一点D,作DFAC于点F,作DGAB于点G.因为平面PAC平面ABC,且交线为AC,所以DF平面PAC.

    因为PA平面PAC,所以DFPA.

    同理可证,DGPA.

    因为DGDF=D,所以PA平面ABC.

    (2)连接BE并延长交PC于点H.

    因为E是PBC的垂心,所以PCBH.

    又因为AE是平面PBC的垂线,所以PCAE.

    因为BHAE=E,所以PC平面ABE,

    所以PCAB.

    又因为PA平面ABC,所以PAAB.

    因为PAPC=P,所以AB平面PAC.

    所以ABAC,即ABC是直角三角形.

    【补偿训练】

       如图,α⊥β,α∩β=l,ABα,ABl,BCβ,DEβ,BCDE.

    求证:AC⊥DE.

    【证明】因为α⊥β,α∩β=l,ABα,ABl,

    所以AB⊥β.

    因为DEβ,所以ABDE.

    因为BCDE,ABBC=B,

    所以DE平面ABC.

    因为AC平面ABC,所以ACDE.

    10.(2017·北京高考)如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA= AB=BC=2,D为线段AC的中点,E为线段PC上一点.

    (1)求证:PA⊥BD;

    (2)求证:平面BDE⊥平面PAC;

    (3)当PA∥平面BDE时,求三棱锥E-BCD的体积.

    【解析】(1)因为PAAB,PABC,AB平面ABC,BC平面ABC,且ABBC=B,所以PA平面ABC,BD平面ABC,所以PABD.

    (2)因为AB=BC,D是AC的中点,所以BDAC,

    由(1)知PA平面ABC,

    因为PA平面PAC,所以平面PAC平面ABC,

    因为平面PAC平面ABC=AC,BD平面ABC,BDAC,所以BD平面PAC,

    因为BD平面BDE,所以平面BDE平面PAC.

    (3)因为PA平面BDE,

    又DE=平面BDE平面PAC,

    PA平面PAC,所以PADE,

    因为D是AC的中点,

    所以E为PC的中点,所以DE=1,

    所以SBDC=SABC=××2×2=1,

    VE-BCD=×1×DE=×1×1=.

    (25分钟 50分)

    一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)

    1.已知直线l⊥平面α,直线m∥平面β,若α⊥β,则下列结论正确的是(  )

    A.l∥β或lβ   B.lm

    C.m⊥α     D.l⊥m

    【解析】A.对于A.直线l平面α,α⊥β,l∥βlβ,A正确;

    对于B.直线l平面α,直线m∥平面β,α⊥β,l∥ml与m相交或lm异面,所以B,D错误;

    对于C.直线l平面α,直线m平面β,且α⊥β,则m⊥α或m与α相交或mα或m∥α,所以C错误.

    2.α,β,γ表示平面,a,b表示直线,若β⊥γ,且α与γ相交但不垂直,则(  )

    A.bβ,b⊥γ   B.bβ,b∥γ

    C.aα,a⊥γ   D.aα,a∥γ

    【解析】D.β∩γ=l,根据面面垂直的性质定理,只有β内与l垂直的直线b才与γ垂直,A错误内与l垂直的直线bγ相交,bγ不平行,B错误.假若aα,a⊥γ,根据面面垂直的判定定理,可以得出α⊥γ,αγ相交但不垂直矛盾,C错误.αγ相交于m,则在α内与m平行的直线aγ平行,D正确.

    3.将正方形ABCD沿BD折起,使平面ABD⊥平面BCD,M为CD的中点,则∠AMD的大小是              (  )

    A.45°   B.30°   C.60°   D.90°

    【解析】D.由题意画出图形,如图,

    设正方形的边长为2,

    折叠前后AD=2,DM=1,连接AC交BD于O,连接OM,则OM=1,AO=,因为正方形ABCD沿对角线BD折起,使平面ABD平面CBD,

    AOBD,所以AO平面BCD,所以AOOM,

    RtAOM,AM==,

    AD=2,MD=1,所以DM2+AM2=AD2,

    所以AMD=90°.

    4.(多选题)用a,b,c表示空间中三条不同的直线,γ表示平面,下列命题中是真命题的是              (  )

    A.若a⊥b,b⊥c,则a∥c

    B.若a∥b,a∥c,则b∥c

    C.若a∥γ,b∥γ,则a∥b

    D.若a⊥γ,b⊥γ,则a∥b

    【解析】BD.对于A,正方体从同一顶点引出的三条直线a,b,c,满足a⊥b,b⊥c,但是a⊥c,所以A错误;对于B,a∥b,a∥c,b∥c,满足平行线公理,所以B正确;对于C,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以C错误;对于D,由垂直于同一平面的两条直线平行,D正确.

    二、填空题(每小题5分,共10分)

    5.如图所示,边长为2a的正△ABC的中线AF与中位线DE相交于G,已知△AED是△AED绕DE旋转过程中的一个图形,现给出下列结论,其中正确的结论有________.(填上所有正确结论的序号) 

    ①动点A在平面ABC上的射影在线段AF上.

    ②三棱锥A-FED的体积有最大值.

    ③恒有平面AGF⊥平面BCED.

    ④异面直线AE与BD不可能互相垂直.

    【解析】因为DEAG,DEGF,AGGF=G,

    所以DE平面AGF,又DE平面BCED,

    所以平面AGF平面BCED,故正确.

    过A作AHAF,垂足为H(图略),

    则AH平面AGF,所以AHDE,又DEAF=G,所以AH平面ABC,故正确.

    三棱锥A-FED的底面FED的面积是定值,高是点A到平面FED的距离.

    易证当AG平面FED时距离(即高)最大,三棱锥A-FED的体积最大,故正确.

    易知BDEF,所以AEF是异面直线AE与BD所成的角.正ABC的边长为2a,AE=a,EF=a,

    而AF的长度的取值范围是(0,a),

    当AF=a时,AE2+EF2=AF2,AEF=90°,

    此时直线AE与BD互相垂直,故错误.

    答案:①②③

    6.如图,在ABCD中,AB⊥BD,沿BD将△ABD折起,使平面ABD⊥平面BCD,连接AC.在四面体A-BCD的四个面中,写出互相垂直的两对平面:________________. 

    【解析】在平行四边形ABCD中,因为ABCD,ABBD,所以CDBD.又因为平面ABD平面BCD,平面ABD平面BCD=BD,CD平面BCD.所以CD平面ABD.

    又CD平面ACD,所以平面ACD平面ABD.

    因为ABBD,平面ABD平面BCD,

    所以平面ABC平面BCD,

    所以共有3对互相垂直的平面,选其中两对即可.

    答案:平面ACD平面ABD

    平面ABC平面BCD(答案不唯一)

    三、解答题(每小题10分,共20分)

    7.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:

    (1)PA⊥底面ABCD;

    (2)BE∥平面PAD;

    (3)平面BEF⊥平面PCD.

    【证明】(1)因为平面PAD底面ABCD,平面PAD底面ABCD=AD,PA平面PAD,PAAD,所以PA底面ABCD.

    (2)因为ABCD,CD=2AB,E是CD的中点,所以ABDE,且AB=DE.

    所以四边形ABED为平行四边形,所以BEAD.

    又BE平面PAD,AD平面PAD,所以BE平面PAD.

    (3)因为ABAD,四边形ABED为平行四边形,所以BECD,ADCD.

    由(1)知PA底面ABCD,所以PACD.因为PAAD=A,所以CD平面PAD,所以CDPD.

    因为E和F分别是CD和PC的中点,所以PDEF,所以CDEF.

    因为CDBE,EFBE=E,所以CD平面BEF.因为CD平面PCD,所以平面BEF平面PCD.

    8.在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且==λ(0<λ<1).

    (1)求证:不论λ为何值,总有平面BEF⊥平面ABC;

    (2)当λ为何值时,平面BEF⊥平面ACD?

    【解析】(1)因为AB平面BCD,所以ABCD.

    因为CDBC,且ABBC=B,所以CD平面ABC.

    ==λ(0<λ<1),所以不论λ为何值,恒有EFCD,所以EF平面ABC.

    又EF平面BEF,

    所以不论λ为何值,总有平面BEF平面ABC.

    (2)由(1)知,EFBE,

    又平面BEF平面ACD,所以BE平面ACD,

    所以BEAC.因为BC=CD=1,BCD=90°,ADB=60°,AB平面BCD,所以BD=,AB=tan 60°=,

    所以AC==,

    由AB2=AE·AC得AE=,所以λ==,

    故当λ=时,平面BEF平面ACD.

     

    关闭Word文档返回原板块

     

    相关试卷

    人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课后复习题:

    这是一份人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课后复习题,共4页。试卷主要包含了6 空间直线、平面的垂直,下列命题正确的是等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直精练:

    这是一份高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直精练,共16页。试卷主要包含了基础巩固,能力提升等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直同步练习题:

    这是一份高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直同步练习题,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版 必修 第二册 8.6.3平面与平面垂直(二)Word版含解析练习题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map