终身会员
搜索
    上传资料 赚现金
    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题2.10 变化率与导数、导数的计算(原卷版).docx
    • 解析
      专题2.10 变化率与导数、导数的计算(解析版).doc
    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案01
    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案02
    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案03
    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案01
    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案02
    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案

    展开
    这是一份专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案,文件包含专题210变化率与导数导数的计算解析版doc、专题210变化率与导数导数的计算原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。

    第二篇 函数、导数及其应用

    专题2.10 变化率与导数、导数的计算

    要求

    1. 了解导数概念的实际背景,理解导数的几何意义.

    2.能根据导数的定义求函数yC(C为常数)yxyyx2的导数.

    3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.

    【命题趋势】

    1. 导数的概念及几何意义是热点问题,难度不大,经常与函数结合,通过求导研究函数的性质.

    2.导数几何意义的应用是热点问题,难度较大,题型大多是根据导数的几何意义求参数值或参数的取值范围,以及与切线有关的计算、证明问题.

    【核心素养】

    本讲内容主要考查数学运算、数学建模的核心素养.

    【素养清单基础知识】

    1.导数的概念

    (1)函数yf(x)xx0处的导数:函数yf(x)xx0处的瞬时变化率

    为函数yf(x)xx0处的导数,记作f′(x0)yxx0,即f′(x0).

    函数yf(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越

    (2)导数的几何意义:函数f(x)xx0处的导数f′(x0)的几何意义是在曲线yf(x)上点P(x0y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为yy0f′(x0)(xx0)

    曲线yf(x)在点P(x0y0)处的切线是指P为切点,斜率为kf(x0)的切线,是唯一的一条切线.

    (3)函数f(x)的导函数:称函数f′(x)f(x)的导函数.

    (4)f′(x)是一个函数,f′(x0)是函数f′(x)x0处的函数值(常数)[f′(x0)]′0.

    2.基本初等函数的导数公式

    原函数

    导函数

    f(x)xn(nQ*)

    f′(x)n·xn1

    f(x)sin x

    f′(x)cos x

    f(x)cos x

    f′(x)=-sin x

    f(x)ax(a0,且a≠1)

    f′(x)axln a

    f(x)ex

    f′(x)ex

    f(x)logax(a0,且a≠1)

    f′(x)

    f(x)ln x

    f′(x)

    3.导数的运算法则

    (1)[f(xg(x)]′f′(xg′(x)

    (2)[f(xg(x)]′f′(x)g(x)f(x)g′(x)

    (3) (g(x)≠0)

    4.复合函数的导数

    复合函数yf(g(x))的导数和函数yf(u)ug(x)的导数间的关系为yxyu′·ux,即yx的导数等于yu的导数与ux的导数的乘积.

    【素养清单常用结论】

    1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.

    2.熟记以下结论:

    (1)=-(2)(ln|x|)′

    (3) (f(x)≠0)

    (4)[af(xbg(x)]′af′(xbg′(x)

    【真题体验】

    12019年高考全国卷理数】已知曲线在点(1ae)处的切线方程为y=2x+b,则  

    A                              Ba=eb=1

    C                           D

    2.2019年高考天津理数】已知,设函数若关于的不等式上恒成立,则的取值范围为  

    A                                 B

    C                              D

    3.2019年高考浙江】已知,函数.若函数恰有3个零点,则  

    Aa<–1b<0                                    Ba<–1b>0   

    Ca>–1b<0                                    Da>–1b>0

    4. 2019年高考全国卷理数】曲线在点处的切线方程为____________

    5. 2019年高考江苏】在平面直角坐标系中,P是曲线上的一个动点,则点P到直线的距离的最小值是     .

    6.2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e-1)(e为自然对数的底数),则点A的坐标是    .

    7. 2019年高考北京理数】设函数a为常数).若fx)为奇函数,则a=________;若fx)是R上的增函数,则a的取值范围是___________

    【考法拓展题型解码】

    考法一 导数的运算

    解题技巧:导数的运算方法

    (1)连乘形式:先展开,化为多项式的形式,再求导.

    (2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.

    (3)对数形式:先化为和、差的形式,再求导.

    (4)根式形式:先化为分数指数幂的形式,再求导.

    (5)三角形式:先用三角函数公式转化为和或差的形式,再求导.

    (6)复合函数:确定复合关系,由外向内逐层求导.

    【例1 (1)(2018·天津卷)已知函数f(x)exln xf′(x)f(x)的导函数,则f′(1)的值为__________

    (2)已知函数f(x)的导函数为f′(x),且满足关系式f(x)x23xf′(2)ln x,则f′(2)__________.

    (3)已知函数f(x)fsin xcos x,则f__________.

     

     

     

     

     

    【例2 求下列函数的导数.

    (1)y(1)                         (2)y

    (3)ytan x(4)y3xex2xe.

     

     

     

     

     

     

    考法二 导数的几何意义

    解题技巧导数几何意义的应用类型及求解思路

    (1)若求过点P(x0y0)的切线方程,可设切点为(x1y1),由求解即可.

    (2)已知斜率k,求切点A(x1f(x1)),即解方程f′(x1)k.

    (3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.

    【例3 (1)(2018·全国卷Ⅰ)设函数f(x)x3(a1)x2ax.f(x)为奇函数,则曲线yf(x)在点(0,0)处的切线方程为(  )

    Ay=-2x  By=-x

    Cy2x  Dyx

     

     

     

     (2)设曲线yex在点(0,1)处的切线与曲线y(x>0)上点P处的切线垂直,则点P的坐标为__________

     

     

     

     (3)(2019·金陵中学月考)已知f(x)ln xg(x)x2mx(m<0),直线l与函数f(x)g(x)的图象都相切,与f(x)图象的切点为(1f(1)),则m__________.

     

     

    【易错警示】

    易错点 审题不认真致误

    【典例】 求曲线Syf(x)2xx3过点A(1,1)的切线方程.

    【错解】:易知点A(1,1)f(x)2xx3的图象上,

    f′(x)23x2,所以f′(1)23=-1k

    所以过点A的切线方程为y1=-(x1),即xy20.

    【错因分析】:审题时忽视了曲线在点P处的切线与曲线过点P的切线的不同.

    【正解】:设切点为(x0f(x0)).因为f′(x)23x2,所以切线方程为yf′(x0)(xx0)f(x0),即y(23x)(xx0)2x0x,将点A的坐标(1,1)代入得1(23x)(1x0)2x0x,整理得2x3x10,即2x2xx10

    所以(x01)2(2x01)0,解得x01或-

    所以y01f′(x0)=-1y0=-f′(x0).

    所以切线方程为y=-x2yx.

    归纳总:

    若已知曲线过点P(x0y0),求曲线过点P(x0y0)的切线方程,则需分点P(x0y0)是切点和不是切点两种情况求解.

    (1)P(x0y0)是切点时,切线方程为yy0f′(x0)(xx0)

    (2)P(x0y0)不是切点时,可分为以下几步完成:

    第一步:设出切点坐标P′(x1f(x1))

    第二步:写出过点P′(x1f(x1))的切线方程yf(x1)f′(x1)(xx1)

    第三步:将点P的坐标(x0y0)代入切线方程,求出x1

    第四步:将x1的值代入方程yf(x1)f′(x1)(xx1),由此即可得过点P(x0y0)的切线方程.

    【跟踪训练】 已知函数f(x)x34x25x4.

    (1)求曲线f(x)在点(2f(2))处的切线方程;

    (2)求经过点A(2,-2)的曲线f(x)的切线方程.

     

     

     

     

     

    【递进题组】

    1.已知yf(x)是可导函数.如图,直线ykx2是曲线yf(x)x3处的切线,令g(x)xf(x)g′(x)g(x)的导函数,则g′(3)(  )

    A1  B0

    C2  D4

    2求下列函数的导数

    (1)yx43x25x6                    (2)yx·tan x

    (3)y(x1)(x2)(x3)                 (4)y.

     

     

     

     

     

    3(2019·盐城伍佑中学调研)若函数f(x)x2axln x存在垂直于y轴的切线,求实数a的取值范围.

     

     

     

     

     

     

     

     

     

    4.已知曲线Cy3x42x39x24.

    (1)求曲线C在横坐标为1的点处的切线方程;

    (2)(1)问中的切线与曲线C是否还有其他公共点,若有,请求出;若没有,请说明理由.

     

     

     

     

     

     

     

     

     

    【考卷送检】

    一、选择题

    1.若f(x)2xf′(1)x2,则f′(0)(  )

    A2  B0

    C.-2  D.-4

    2.设曲线y在点处的切线与直线xay10平行,则实数a等于(  )

    A.-1    B

    C.-2    D2

    3.(2019·衡水调研)曲线y1在点(1,-1)处的切线方程为(  )

    Ay2x1  By2x1

    Cy=-2x3  Dy=-2x2

    4.在等比数列{an}中,a12a84f(x)x(xa1)(xa2)·…·(xa8)f′(x)为函数f(x)的导函数,则f′(0)(  )

    A0  B26

    C29  D212

    5.已知点P在曲线y上,α为曲线在点P处的切线的倾斜角,则α的取值范围是(  )

    A  B

    C  D

    6.下面四个图象中,有一个是函数f(x)x3ax2(a21)x1(aR)的导函数yf′(x)的图象,则f(1)(  )

    A  B.-

    C  D.-

    二、填空题

    7.曲线y=-5ex3在点(0,-2)处的切线方程为________

    8(2018·全国卷Ⅲ)曲线y(ax1)ex在点(0,1)处的切线的斜率为-2,则a________.

    9.已知曲线y3ln x的一条切线的斜率为,则切点坐标为________

    三、解答题

    10.已知函数f(x)x3x16.

    (1)求曲线yf(x)在点(2,-6)处的切线的方程;

    (2)直线l为曲线yf(x)的切线,且经过原点,求直线l的方程及切点坐标.

     

     

     

     

    11(2019·哈尔滨三中期中)已知函数f(x)x32x23x(xR)的图象为曲线C

    (1)求过曲线C上任意一点切线斜率的取值范围;

    (2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.

     

     

     

     

     

     

    12(2019·吉林校级联考)设有抛物线Cy=-x2x4,过原点OC的切线ykx,使切点P在第一象限.

    (1)k的值;

    (2)过点P作切线的垂线,求它与抛物线的另一个交点Q的坐标.

     

     

     

     

     

     

    13.设过曲线f(x)=-exx(e为自然对数的底数)上的任意一点的切线为l1,总存在过曲线g(x)mx3sin x上的一点处的切线l2,使l1l2,则m的取值范围是________

     

    相关学案

    高考数学统考一轮复习第3章3.1变化率与导数导数的计算学案: 这是一份高考数学统考一轮复习第3章3.1变化率与导数导数的计算学案,共8页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。

    专题2.13 导数的综合应用-2022年高考数学一轮复习核心素养大揭秘学案: 这是一份专题2.13 导数的综合应用-2022年高考数学一轮复习核心素养大揭秘学案,文件包含专题213导数的综合应用解析版doc、专题213导数的综合应用原卷版doc等2份学案配套教学资源,其中学案共31页, 欢迎下载使用。

    专题2.12 导数与函数的极值、最值-2022年高考数学一轮复习核心素养大揭秘学案: 这是一份专题2.12 导数与函数的极值、最值-2022年高考数学一轮复习核心素养大揭秘学案,文件包含专题212导数与函数的极值最值解析版doc、专题212导数与函数的极值最值原卷版doc等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.10 变化率与导数、导数的计算-2022年高考数学一轮复习核心素养大揭秘学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map