所属成套资源:2022年高考数学一轮复习核心素养大揭秘
专题3.3 三角函数的图像和性质-2022年高考数学一轮复习核心素养大揭秘学案
展开
这是一份专题3.3 三角函数的图像和性质-2022年高考数学一轮复习核心素养大揭秘学案,文件包含专题33三角函数的图像和性质解析版doc、专题33三角函数的图像和性质原卷版doc等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。
第三篇 三角函数与解三角形
专题3.3 三角函数的图像和性质
【考纲要求】
1. 能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性.
2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间内的单调性.
3.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.
4.体会三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.
【命题趋势】
1.三角函数的图象,主要考查三角函数的图象变换、三角函数解析式的求法及三角函数图象的应用.
2.三角函数的性质是高考的必考内容,常与三角函数的图象结合,主要考查三角函数的周期性、单调性、最值、奇偶性、对称性.
3.高考中常以选择、填空题的形式考查三角函数关系式、三角函数诱导公式、三角函数的奇偶性及对称性,属于中低档题.
4.以解答题的形式考查三角函数的单调性、最值,常与平面向量、解三角形及三角恒等变换相结合.
【核心素养】
本讲内容主要考查数学运算和直观想象的核心素养。
【素养清单•基础知识】
1.用五点法作正弦函数和余弦函数的简图
(1)“五点法”作图原理:
在正弦函数y=sin x,x∈[0,2π]的图象上,五个关键点是:(0,0),,(π,0),,(2π,0).
在余弦函数y=cos x,x∈[0,2π]的图象上,五个关键点是:(0,1),,(π,-1),,(2π,1).
函数y=sin x,x∈[0,2π],y=cos x,x∈[0,2π]的五个关键点的横坐标是零点和极值点(最值点).
(2)五点法作图的三步骤:列表、描点、连线(注意光滑).
2.正弦、余弦、正切函数的图象与性质
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
值域
[-1,1]
[-1,1]
R
奇偶性
奇函数
偶函数
奇函数
单
调
性
在(k∈Z)上是递增函数,在(k∈Z)上是递减函数
在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数
在(k∈Z)上是递增函数
周
期
性
周期是2kπ(k∈Z且k≠0),最小正周期是2π
周期是2kπ(k∈Z且k≠0),最小正周期是2π
周期是kπ(k∈Z且k≠0),最小正周期是
对
称
性
对称轴是x=+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)
对称轴是x=kπ(k∈Z),对称中心是(k∈Z)
对称中心是
(k∈Z)
三角函数性质的注意点:
(1)正、余弦函数一个完整的单调区间的长度是半个周期;y=tan x无单调递减区间;y=tan x在整个定义域内不单调.
(2)要注意求函数y=Asin(ωx+φ)的单调区间时A和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.
3.函数y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)
(A>0,ω>0)
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
4.用五点法画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图
用五点法画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个关键点,如下表所示:
ωx+φ
0
π
2π
x
-
-
-
y=Asin(ωx+φ)
0
0
-A
0
5.由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的两种方法
(1)两种变换的区别
①先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;②先周期变换(伸缩变换)再相位变换,平移的量是(ω>0)个单位长度.
(2)变换的注意点
无论哪种变换,每一个变换总是针对自变量x而言的,即图象变换要看“自变量x”发生多大变化,而不是看角“ωx+φ”的变化.
【素养清单•常用结论】
1.对称与周期的关系
正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.
2.与三角函数的奇偶性相关的结论
(1)若y=Asin(ωx+φ)为偶函数,则有φ=kπ+(k∈Z);若为奇函数,则有φ=kπ (k∈Z).
(2)若y=Acos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+ (k∈Z).
(3)若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).
【真题体验】
1.【2019年高考全国Ⅰ卷理数】函数f(x)=在的图像大致为( )
A. B.
C. D.
【答案】D
【解析】由,得是奇函数,其图象关于原点对称,排除A.又,排除B,C,故选D.
【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.
2.【2019年高考全国Ⅰ卷理数】关于函数有下述四个结论:
①f(x)是偶函数 ②f(x)在区间(,)单调递增
③f(x)在有4个零点 ④f(x)的最大值为2
其中所有正确结论的编号是( )
A.①②④ B.②④
C.①④ D.①③
【答案】C
【解析】为偶函数,故①正确.
当时,,它在区间单调递减,故②错误.
当时,,它有两个零点:;当时,
,它有一个零点:,故在有个零点:,故③错误.
当时,;当时,,又为偶函数,的最大值为,故④正确.
综上所述,①④正确,故选C.
【名师点睛】本题也可画出函数的图象(如下图),由图象可得①④正确.
3. 【2019年高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是( )
A.f(x)=|cos2x| B.f(x)=|sin2x|
C.f(x)=cos|x| D.f(x)=sin|x|
【答案】A
【解析】作出因为的图象如下图1,知其不是周期函数,排除D;
因为,周期为,排除C;
作出图象如图2,由图象知,其周期为,在区间(,)单调递增,A正确;
作出的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,
故选A.
图1
图2
图3
【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数的周期是函数周期的一半;②不是周期函数.
4.【2019年高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:
①在()有且仅有3个极大值点
②在()有且仅有2个极小值点
③在()单调递增
④的取值范围是[)
其中所有正确结论的编号是( )
A.①④ B.②③
C.①②③ D.①③④
【答案】D
【解析】①若在上有5个零点,可画出大致图象,
由图1可知,在有且仅有3个极大值点.故①正确;
②由图1、2可知,在有且仅有2个或3个极小值点.故②错误;
④当=sin()=0时,=kπ(k∈Z),所以,
因为在上有5个零点,
所以当k=5时,,当k=6时,,解得,
故④正确.
③函数=sin()的增区间为:,.
取k=0,
当时,单调递增区间为,
当时,单调递增区间为,
综上可得,在单调递增.故③正确.
所以结论正确的有①③④.故本题正确答案为D.
【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错.
5.【2019年高考天津卷理数】已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,且,则( )
A. B.
C. D.
【答案】C
【解析】∵为奇函数,∴;
又∴,
又,∴,
∴,故选C.
【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数,再根据函数性质逐步得出的值即可.
6. 【2018年高考天津理数】将函数的图象向右平移个单位长度,所得图象对应的函数( )
A.在区间上单调递增 B.在区间上单调递减
C.在区间上单调递增 D.在区间上单调递减
【答案】A
【解析】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为.
则函数的单调递增区间满足,即,
令可得一个单调递增区间为.
函数的单调递减区间满足:,即,
令可得一个单调递减区间为:.
故选A.
【名师点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.
7. 【2018年高考浙江卷】函数y=sin2x的图象可能是( )
A. B.
C. D.
【答案】D
【解析】令,因为,所以为奇函数,排除选项A,B;
因为时,,所以排除选项C,
故选D.
【名师点睛】解答本题时,先研究函数的奇偶性,再研究函数在上的符号,即可作出判断.有关函数图象的识别问题的常见题型及解题思路:
(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;
(2)由函数的单调性,判断图象的变化趋势;
(3)由函数的奇偶性,判断图象的对称性;
(4)由函数的周期性,判断图象的循环往复.
8.【2017年高考全国Ⅲ理数】设函数,则下列结论错误的是( )
A.的一个周期为
B.的图象关于直线对称
C.的一个零点为
D.在(,)单调递减
【答案】D
【解析】函数的最小正周期为,则函数的周期为,取,可得函数的一个周期为,选项A正确;
函数图象的对称轴为,即,取,可得y=f(x)的图象关于直线对称,选项B正确;
,函数的零点满足,即,取,可得的一个零点为,选项C正确;
当时,,函数在该区间内不单调,选项D错误.
故选D.
【名师点睛】(1)求最小正周期时可先把所给三角函数式化为或的形式,则最小正周期为;奇偶性的判断关键是解析式是否为或的形式.
(2)求的对称轴,只需令,求x;求f(x)的对称中心的横坐标,只需令即可.
【考法拓展•题型解码】
考法一 三角函数的图象及变换
归纳总结:三角函数图象的两种变换
(1)平移变换
①沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ0,上移;k0,ω>0)中参数的方法
(1)求A,b:确定函数的最大值M和最小值m,则A=(M-m)/2,b=(M+m)/2.
(2)求ω:确定函数的周期T,则可得ω=.
(3)求φ:常用的方法有:
①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点是在上升区间还是在下降区间).
②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:
“第一点”(即图象上升时与x轴的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=π;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”为ωx+φ=2π.
【例2】 (1)函数y=Asin(ωx+φ)的部分图象如图所示,则( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
【答案】A
【解析】由图象知A=2,=-=,故T=π,由此可排除C,D;将点依次代入选项A,B中的函数解析式,A项符合题意,B项不符合题意,由此排除选项B.故选A.
(2)如图是函数y=Asin(ωx+φ)+b(A>0,ω>0)的图象的一部分,它的振幅、周期、初相各是( )
A.A=3,T=,φ=-
B.A=1,T=,φ=
C.A=1,T=,φ=-
D.A=1,T=,φ=-
【答案】C
【解析】由图象知,A==1,b==2,=-=,则T=,ω=.由×+φ=+2kπ,k∈Z,得φ=-+2kπ,k∈Z,令k=0,得φ=-.
考法三 三角函数的单调性
解题技巧:三角函数单调性问题的常见类型及解题策略
(1)已知三角函数的解析式求单调区间:
①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性“同增异减”的规律;
②求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx+φ”为一个整体,通过解不等式求解.但如果ω0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】B
【解析】f(x)是奇函数时,φ=+kπ(k∈Z);φ=时,f(x)=Acos=-Asin ωx,为奇函数,所以“f(x)是奇函数”是“φ=”的必要不充分条件
(2)(2018·江苏卷)已知函数y=sin(2x+φ)的图象关于直线x=对称,则φ的值是__________.
【答案】 -
【解析】由2×+φ=kπ+(k∈Z)得φ=kπ-,又φ∈,取k=0,φ=-.
(3)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间上具有单调性,且f =f =-f ,则f(x)的最小正周期为__________.
【答案】 π
【解析】记f(x)的最小正周期为T.由题意知≥-=.又f =f =-f ,且-=.
可作出示意图如图所示(一种情况).
所以x1=×=,x2=×=,
所以=x2-x1=-=.所以T=π.
考法六 三角函数模型的应用
归纳总结
三角函数模型在实际中的应用体现在两个方面,一是已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则.二是把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.
【例7】 如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k.据此函数可知,这段时间水深(单位:m)的最大值为( )
A.5 B.6
C.8 D.10
【答案】C
【解析】 根据图象得函数的最小值为2,有-3+k=2,k=5,最大值为3+k=8.
【易错警示】
易错点 图象变换出现错误
【典例】 要得到y=sin的图象,只需将y=sin的图象( )
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
【错解一】:由函数y=sin的图象向左平移就得到y=sin=sin的图象.故选C.
【错解二】:由函数y=sin的图象向右平移就得到y=sin的图象.故选D.
【错因分析】:错解一中将y=sin的图象向左平移得到的应该是函数y=sin=sin的图象,变换求式时忽视了x的系数-.
错解二对题意理解有误,是将谁平移变换得到谁弄反了,另外,若向右平移个单位,应该得到函数y=sin=sin的图象.
【正解答案】:B
【正解】:因为y=sin=sin,与y=sin比较,只需x→x-即可.故选B.
【跟踪训练】 要得到函数y=sin的图象,只需将函数y=sin 4x的图象( )
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
【答案】B
【解析】 由y=sin=sin 4得,只需将y=sin 4x的图象向右平移个单位长度即可.故选B.
【递进题组】
1.把函数y=sin的图象上所有点向右平移个单位长度,再将所得图象的横坐标变为原来的(纵坐标不变),所得图象的解析式是y=sin(ωx+φ)(ω>0,|φ|
相关学案
这是一份专题8.6 双曲线的定义、标准方程、几何性质-2022年高考数学一轮复习核心素养大揭秘学案,文件包含专题86双曲线的定义标准方程几何性质解析版doc、专题86双曲线的定义标准方程几何性质原卷版doc等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。
这是一份专题8.5 椭圆的定义、标准方程、几何性质-2022年高考数学一轮复习核心素养大揭秘学案,文件包含专题85椭圆的定义标准方程几何性质解析版doc、专题85椭圆的定义标准方程几何性质原卷版doc等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。
这是一份专题8.3 圆的方程-2022年高考数学一轮复习核心素养大揭秘学案,文件包含专题83圆的方程解析版doc、专题83圆的方程原卷版doc等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。