![2022-2023学年人教A版(2019)必修一第五章 三角函数 单元测试卷(word版 含答案)第1页](http://img-preview.51jiaoxi.com/3/3/12843103/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年人教A版(2019)必修一第五章 三角函数 单元测试卷(word版 含答案)第2页](http://img-preview.51jiaoxi.com/3/3/12843103/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年人教A版(2019)必修一第五章 三角函数 单元测试卷(word版 含答案)第3页](http://img-preview.51jiaoxi.com/3/3/12843103/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教A版(2019)必修一高中数学单元测试卷
- 2022-2023学年人教A版(2019)必修一第一章集合与常用逻辑用语单元测试卷(word版 含答案) 试卷 0 次下载
- 2022-2023学年人教A版(2019)必修一第一、二章综合测试卷(word版 含答案) 试卷 0 次下载
- 2022-2023学年人教A版(2019)必修一第二章 一元二次函数、方程和不等式单元测试卷(word版 含答案) 试卷 0 次下载
- 2022-2023学年人教A版(2019)必修一第三章函数概念与性质单元测试卷(word版 含答案) 试卷 0 次下载
- 2022-2023学年人教A版(2019)必修一第四章 指数函数与对数函数单元测试卷(word版 含答案) 试卷 0 次下载
2022-2023学年人教A版(2019)必修一第五章 三角函数 单元测试卷(word版 含答案)
展开
这是一份2022-2023学年人教A版(2019)必修一第五章 三角函数 单元测试卷(word版 含答案),共9页。
人教A版(2019)第五章 三角函数 单元测试卷学校:___________姓名:___________班级:___________考号:___________
一、选择题1.若是钝角,则是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.如果角的终边经过点,那么( )A. B. C. D.3.定义运算,若,,,则等于( )A. B. C. D.4.设直线与函数,,的图像在内交点的横坐标依次为,,,则( )A. B. C. D.5.要得到函数的图象,只需要将函数的图象( )A.向左平移个单位 B.向左平移个单位 C.向右平移个单位 D.向右平移个单位6.函数的最小值和最小正周期分别为( )A.1,2π B.0,2π C.1,π D.0,π7.已知,则( )A. B. C. D.38.已知,下列各角中与的终边在同一条直线上的是( )A. B. C. D.二、填空题9.设,且,则________.10.已知角的顶点为坐标原点,始边为x轴的非负半轴,若是角终边上一点,且,则__________.11.已知函数的图象经过点,则该函数的振幅为_____,周期T为_____,频率为_____,初相为_____.12.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点,则___________.13.已知角为第二象限角,且,则_________,________.14.若在上有两个不同的实数值满足方程,则k的取值范围是________.15.已知,,且为第二象限角,则的值为______,______.三、解答题16.已知角的终边经过点,求下列各式的值:(1); (2).17.已知函数.(1)求的最小正周期和最大值;(2)讨论在上单调性.18.已知函数(1)求函数的最小正周期(2)先将函数的图象向右平移个单位长度,再将所得图象上所有点的横坐标缩短为原来的(纵坐标不变),得到函数的图象,求函数在上的值域19.已知函数(1)求的单调递增区间;(2)当时,求的最大值和最小值.
参考答案1.答案:D解析:,,,在第四象限.故选:D2.答案:A解析:易知,,.原式.3.答案:D解析:依题意有.,,故.,,,故.4.答案:D解析:解:当时,
,,
,,
又,,
,,
.
故选:D.
当时,可求出,利用诱导公式,,可求出,即可求解.
考查了诱导公式的应用,特殊角的三角函数值,属于基础题.5.答案:D解析:假设将函数的图象平移个单位得到:,,应向右平移个单位.6.答案:D解析:当时,取得最小值,且.又其最小正周期,的最小值和最小正周期分别是0,π.故选D.7.答案:A解析:∵,∴,,∴,故选:A.8.答案:A解析:因为,所以与的终边在同一条直线上.9.答案:0解析:因为,所以,因此.故答案为:010.答案:解析:∵角的顶点为坐标原点,始边为x轴的非负半轴,若是角终边上一点,且,则.11.答案:2;6;;解析:振幅,周期,频率.因为图象过点,所以,所以,又,所以.12.答案:解析:由题意可得,,所以.13.答案:;-3解析:解法一:因为为第二象限角,且,所以,所以,,所以.解法二:因为为第二象限角,且,所以,所以.所以.14.答案:解析:解:化简可得,原问题等价于与的图象有两个不同的交点,,,作出图象可得,解得.15.答案:4;解析:∵,,∴,∴或.∵为第二象限角,∴,,∴,∴,,∴.故答案为:4;.16.答案:(1)原式(2)原式解析:角的终边经过点,,,.(1)原式.(2)原式.17.答案:(1)最小正周期为π,最大值为.(2)在上单调递增;在上单调递减.解析:(1).因此的最小正周期为π,最大值为.(2)当时,,从而当,即时,单调递减.综上可知,在上单调递增;在上单调递减.18.答案: (1)所以函数的最小正周期为(2)将函数的图象向右平移个单位长度,得到函数的图象,再将该图象所有点的横坐标缩短为原来的(纵坐标不变),得到的图象,故,由,得所以时,,所以函数在上的值域为解析: 19.答案:(1)的单调递减区间是,.(2)最大值2,最小值.解析:(1)由,得.
所以,的单调递减区间是,.(2),
由,得,
当,即时,有最大值;
当,即时,有最小值.