





(人教A版2019)高二数学选修三 专题10 概率(课时训练)
展开专题10 概率
A组 基础巩固
1.(2022·江苏高邮·高三开学考试)某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是( )
A. B. C. D.
2.(2022·全国·高二课时练习)2021年6月14日是我国的传统节日“端午节”.这天,王华的妈妈煮了五个粽子,其中两个蜜枣馅,三个豆沙馅,王华随机拿了两个粽子,若已知王华拿到的两个粽子为同一种馅,则这两个粽子都为蜜枣馅的概率为( )
A. B. C. D.
3.(2022·辽宁·瓦房店市高级中学高二期末)口袋中装有大小形状相同的红球3个,白球3个,小明从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次取得白球的概率为( )
A.0.4 B.0.5 C.0.6 D.0.75
4.(2022·山东德州·高二期末)某一电子集成块有三个元件a,b,c并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为( ).
A. B. C. D.
5.(2021·辽宁·高二阶段练习)地面上现有标号为1—10号的一个游戏方格,某人投掷一枚质地均匀的硬币,若硬币正面朝上,则他连续向前走2格,若反面朝上,则他连续向前走3格,他从起始位置开始出发,若他超过10号位置,则游戏结束,那么他在8号位置停留的条件下,恰好已经投掷了四次硬币的概率是( )
A. B. C. D.
6.(2022·浙江·镇海中学高二期末)已知事件A,B相互独立,,则( )
A.0.24 B.0.8 C.0.3 D.0.16
7.(2021·重庆一中高三阶段练习)某同学参加学校数学考试,数学考试分为选填题和解答题两部分,选填题及格的概率为,两部分都及格概率为,则在选填题及格的条件下两部分都能及格的概率为( )
A. B. C. D.
8.(2022·四川省宜宾市第四中学校二模(理))设A,是两个事件,且发生A必定发生,,给出下列各式,其中正确的是( )
A. B.
C. D.
9.(2021·北京通州·高二期末)学校有,两个餐厅,如果王同学早餐在餐厅用餐,那么他午餐也在餐厅用餐的概率是,如果他早餐在餐厅用餐,那么他午餐在餐厅用餐的概率是,若王同学早餐在餐厅用餐的概率是,那么他午餐在餐厅用餐的概率是( )
A. B. C. D.
10.(2022·全国·高二课时练习)英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件,,(的对立事件)存在如下关系:.若某地区一种疾病的患病率是,现有一种试剂可以检验被检者是否患病,已知该试剂的准确率为,即在被检验者患病的前提下用该试剂检测,有的可能呈现阳性,该试剂的误报率为,即在被检验者未患病的情况下用该试剂检测,有5%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为( )
A. B. C. D.
11.(2021·全国·高二课时练习)设某医院仓库中有10盒同样规格的X光片,已知其中有5 盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种X光片的次品率依次为,现从这10盒中任取一盒,再从这盒中任取一张X光片,则取得的X光片是次品的概率为( )
A.0.08 B.0.1 C.0.15 D.0.2
12.(2021·全国·高二课时练习)2021年6月14日是中国的传统节日“端午节”,这天人们会吃粽子、赛龙舟.现有七个粽子,其中三个是腊肉馅,四个是豆沙馅,小明随机取两个,记事件A为“取到的两个为同一种馅”,事件B为“取到的两个都是豆沙馅”,则______.
13.(2022·浙江·镇海中学高二期末)已知某次数学期末试卷中有8道4选1的单选题,学生小王能完整做对其中5道题,在剩下的3道题中,有2道题有思路,还有1道完全没有思路,有思路的题做对的概率为,没有思路的题只好从4个选项中随机选一个答案.小王从这8题中任选1题,则他做对的概率为___________.
14.(2021·湖南·高二期中)对正在横行全球的“新冠病毒”,某科研团队研发了一款新药用于治疗,为检验药效,该团队从“新冠”感染者中随机抽取100名,检测发现其中感染了“普通型毒株”,“德尔塔型毒株”、“其他型毒株”的人数占比为.对他们进行治疗后,统计出该药对“普通型毒株”、“德尔塔型毒株”、“其他型毒株”的有效率分别为82%、60%、75%,那么你预估这款新药对 “新冠病毒”的总体有效率是________.
15.(2021·全国·高二课时练习)某人从15米高的楼层把一个成熟的椰子扔向地面,第一次未摔裂的概率为0.4,当第一次未摔裂时第二次也未摔裂的概率为0.3,则这个椰子从15米高的楼层扔向地面两次后仍未摔裂的概率是___________.
16.(2021·全国·高二学业考试)某份资料显示,人群中患肺癌的概率约为0.1%,在人群中有20%是吸烟者,他们患肺癌的概率约为0.4%,则不吸烟者中患肺癌的概率是______.
B组 能力提升
17.(2021·福建省宁化第一中学高二期中)(多选题)骰子通常作为桌上游戏的小道具.最常见的骰子是六面骰,它是一个质地均匀的正方体,六个面上分别写有数字1、2、3、4、5、6.现有一款闯关游戏,共有关,规则如下:在第关要抛掷六面骰次,每次观察向上面的点数并做记录,如果这次抛掷所出现的点数之和大于,则算闯过第关,.假定每次闯关互不影响,则( )
A.直接挑战第关并过关的概率为
B.连续挑战前两关,至多过一关的概率为
C.若直接挑战第关,设“三个点数之和等于”,至少出现一个点”,则
D.若直接挑战第关,则过关的概率是
18.(2021·全国·高二课时练习)(多选)下列说法正确的是( )
A. B.是可能的
C. D.
19.(2022·山东临沂·一模)(多选题)甲和乙两个箱子中各有质地均匀的9个球,其中甲箱中有4个红球,2个白球,3个黑球,乙箱中有4个红球,3个白球,2个黑球,先从甲箱中随机取出一球放入到乙箱中,分别以,,表示从甲箱中取出的球是红球、白球、黑球的事件,再从乙箱中随机取出一球,以B表示取出的球是红球的事件,则( )
A.B与相互独立 B.,,两两互斥
C. D.
20.(2021·辽宁·模拟预测)(多选题)甲箱中有个白球和个黑球,乙箱中有2个白球和个黑球.先从甲箱中随机取出一球放入乙箱中,分别以表示由甲箱中取出的是白球和黑球的事件;再从乙箱中随机取出一球,以表示从乙箱中取出的球是黑球的事件,则下列结论正确的是( )
A.两两互斥 B.
C.事件与事件相互独立 D.
21.(2022·湖南·高一课时练习)一个口袋装有两个白球和两个黑球,把“从中任意摸出一个球,得到白球”记作事件A,把“从剩下的三个球中任意摸出一个球,得到白球”记作事件B.
(1)在先摸出白球后,再摸出白球的概率是多少?
(2)在先摸出黑球后,再摸出白球的概率是多少?
(3)事件A与B是独立的吗?
22.(2021·全国·高二课时练习)盒子里放着三张卡片,一张卡片两面都是红色,一张卡片两面都是黑色,剩下的一张卡片一面是红色一面是黑色.现在随机抽出一张卡片,并展示它的一面的颜色.假设是红色,那么剩下的一面也是红色的概率是多少?
考察下面的解法:
随意从三张卡片中抽出一张,抽到任何一张都是等概率的.如果抽出的这张展示的一面是红色,那么这张卡片有可能是两面全是红色的那张,也可能是一面红一面黑的那张,因此抽到的是两面全红的那张卡片的概率是.
好像很简单,但请再换个问题研究一下:如果展示出来的那一面是黑色,由上面的思路可得抽到两面全是黑色的卡片的概率也是.所以,不管我们看到的是什么颜色,抽到两面同色的卡片的概率都是.这意味着虽然三张卡片中只有两张是同色的卡片,但随机抽到其中任何一张的概率都是.
肯定什么地方出错了.
请问:上述解法中,哪里出现错误呢?
23.(2022·全国·高二课时练习)某技术部门招工需经过四项考核,已知能够通过第一、二、三、四项考核的概率分别为0.6,0.8,0.9和0.65,各项考核是相互独立的.每个应聘者都要经过四项考核,只要有一项考核不通过即被淘汰.
(1)求该部门招工的淘汰率;
(2)求通过第一、三项考核但是仍被淘汰的概率;
(3)假设考核按第一项到第四项的顺序进行,应聘者一旦经某项考核不合格即被淘汰(不再参加后面的考核),求这种情况下的淘汰率.
24.(2022·全国·高二课时练习)如图,有三个箱子,分别编号为,,,其中号箱装有个红球和个白球,号箱装有个红球和个白球,号箱装有个红球,这些球除颜色外完全相同.某人先从三箱中任取一箱,再从中任意摸出一球,发现是红球,求该球是取自号箱的概率以及该球取自几号箱的可能性最大.
25.(2022·湖南·高二课时练习)同一种产品由甲、乙、丙三个厂供应.由长期的经验知,三家的正品率分别为0.95,0.90,0.80,三家产品数所占比例为2∶3∶5,混合在一起.
(1)从中任取一件,求此产品为正品的概率;
(2)现取到一件产品为正品,问它是由甲、乙、丙三个厂中哪个厂生产的可能性大?
26.(2022·吉林·东北师大附中高二期末)现将两个班的艺术类考生报名表分别装进2个档案袋,第一个档案袋内有6名男生和4名女生的报名表,第二个档案袋内有5名男生和5名女生的报名表.随机选择一个档案袋,然后从中随机抽取2份报名表.
(1)若选择的是第一个档案袋,求从中抽到两名男生报名表的概率;
(2)求抽取的报名表是一名男生一名女生的概率.