所属成套资源:2022年高考数学解题方法技巧篇(文理通用)
方法技巧专题08 轨迹方程的求法-2022年高考数学满分之路方法技巧篇
展开
这是一份方法技巧专题08 轨迹方程的求法-2022年高考数学满分之路方法技巧篇
方法技巧专题8 轨迹方程问题 解析版一、 轨迹方程问题知识框架二、求轨迹方程的常用方法【一】定义法定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 1.例题【例1】已知的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足求点C的轨迹。【解析】由可知,即,满足椭圆的定义。令椭圆方程为,则,则轨迹方程为(,图形为椭圆(不含左,右顶点)。【例2】一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线。【解析】设动圆圆心为,半径为,设已知圆的圆心分别为、,将圆方程分别配方得:,,当与相切时,有 ①当与相切时,有 ②将①②两式的两边分别相加,得,即 ③移项再两边分别平方得: ④两边再平方得:,整理得,所以,动圆圆心的轨迹方程是,轨迹是椭圆。【例3】已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程. 【解析】设过B、C异于l的两切线分别切⊙O′于D、E两点, 两切线交于点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,点P的轨迹是以B、C为两焦点的椭圆, 以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨迹方程为:2.巩固提升综合练习【练习1】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。【解析】设动圆的半径为R,由两圆外切的条件可得:,。.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。故所求轨迹方程为【练习2】一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是( )抛物线 B. 圆 C. 椭圆 D. 双曲线一支【解析】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。故选D。【练习3】已知ΔABC中,A,B,C所对应的边为a,b,c,且a>c>b,a,c,b成等差数列,|AB|=2,求顶点C的轨迹方程【解析】|BC|+|CA|=4>2,由椭圆的定义可知,点C的轨迹是以A、B为焦点的椭圆,其长轴为4,焦距为2, 短轴长为2, ∴椭圆方程为, 又a>b, ∴点C在y轴左侧,必有x
相关试卷
这是一份方法技巧专题29 极坐标与参数方程的应用-2022年高考数学满分之路方法技巧篇,文件包含方法技巧专题29极坐标与参数方程的应用解析版docx、方法技巧专题29极坐标与参数方程的应用原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份方法技巧专题28 极坐标与参数方程的概念-2022年高考数学满分之路方法技巧篇,文件包含方法技巧专题28极坐标与参数方程的概念原卷版docx、方法技巧专题28极坐标与参数方程的概念解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份方法技巧专题26 平面向量-2022年高考数学满分之路方法技巧篇,文件包含方法技巧专题26平面向量解析版docx、方法技巧专题26平面向量原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。