终身会员
搜索
    上传资料 赚现金
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (全国通用)备战2022年中考数学一轮复习专题 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)(原卷版).doc
    • 解析
      (全国通用)备战2022年中考数学一轮复习专题 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)(解析版).doc
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)01
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)02
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)03
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)01
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)02
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)

    展开
    这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第十三讲一次函数二次函数背景下的最值问题强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第十三讲一次函数二次函数背景下的最值问题强化训练原卷版doc等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    备战2022年中考数学一轮复习专题讲义+强化训练(全国通用)

    十三  一次函数、二次函数背景下的最值问题

    考点一  将军饮马型求最小值

    考点  搭桥模型求最小值

    考点  胡不归模型求最小值

     

     

     

     

     

     

     

     

     

     

     

     

     


     

    考点一  将军饮马型求最小值

     

    1.一次函数ykx+b的图象与xy轴分别交于点A20),B04).

    1)求该函数的解析式;

    2O为坐标原点,设OAAB的中点分别为CDPOB上一动点,求PC+PD的最小值,并求取得最小值时直线PC与直线AB的交点坐标.

    2.如图1,在平面直角坐标系中,直线l1yx+1y轴交于点A,过B61)的直线l2与直线l1交于点Cm5).

    1)求直线l2的解析式;

    2)若点D是第一象限位于直线l2上的一动点,过点DDHy轴交l1于点H.当DH8时,试在x轴上找一点E,在直线l1上找一点F,使得DEF的周长最小,求出周长的最小值;

    3.如图,已知抛物线yx2+3x8的图象与x轴交于AB两点(点A在点B的右侧)与y轴交于点C

    1)求直线BC的解析式;

    2)点F是直线BC下方抛物线上的一点,当BCF的面积最大时,在抛物线的对称轴上找一点P,使得BFP的周长最小,请求出点F的坐标和点P的坐标.

    4.如图,在平面直角坐标系中,抛物线yx2+x+3,分别交x轴于AB两点,交y轴交于C点,顶点为D

    1)如图1,连接ADR是抛物线对称轴上的一点,当ARAD时,求点R的坐标;

    2)在(1)的条件下.在直线AR上方,对称轴左侧的抛物线上找一点P,过PPQx轴,交直线AR于点Q,点M是线段PQ的中点,过点MMNAR交抛物线对称轴于点N,当平行四边形MNRQ周长最大时,在抛物线对称轴上找一点Ey轴上找一点F,使得PE+EF+FA最小,并求此时点EF的坐标.

     

     

    考点  搭桥模型求最小值

     

    5.如图1,直线AB分别与x轴,y轴交于AB两点,OA6BAO30°,过点BBCABx轴于点C

    1)请求出直线BC的函数解析式.

    2)如图1,取AC中点D,过点D作垂直于x轴的直线DE,分别交直线AB和直线BC于点FE,过点F作关于x轴的平行线交直线BC于点G,点M为直线DE上一动点,作MNy轴于点N,连接AMNG,当AM+MN+NG最小时,求M点的坐标及AM+MN+GN的最小值.

    6.如图,已知点A40)、B02),线段OAOC且点Cy轴负半轴上,连接AC

    1)如图1,求直线AB的解析式;

    2)如图1,点P是直线CA上一点,若SABC3SABP,求满足条件的点P坐标;

    3)如图2,点M为直线lx上一点,将点M水平向右平移6个单位至点N,连接BMMNNC.求BM+MN+NC的最小值及此时点N的坐标.

    7.如图1,抛物线yxx轴交于点ABAB左边),与y轴交于点C,连AC,点D与点C关于抛物线的对称轴对称,过点DDEAC交抛物线于点E,交y轴于点P

    1)点F是直线AC下方抛物线上点一动点,连DFAC于点G,连EG,当EFG的面积的最大值时,直线DE上有一动点M,直线AC上有一动点N,满足MNAC,连GMNO,求GM+MN+NO的最小值;

    8.如图1,已知抛物线yx2+2x3x轴相交于AB两点,与y轴交于点CD为顶点.

    1)求直线AC的解析式和顶点D的坐标;

    2)已知E0),点P是直线AC下方的抛物线上一动点,作PRAC于点R,当PR最大时,有一条长为的线段MN(点M在点N的左侧)在直线BE上移动,首尾顺次连接AMNP构成四边形AMNP,请求出四边形AMNP的周长最小时点N的坐标;

     

    考点  胡不归模型求最小值

     

    9.如图,平面直角坐标系中,已知直线yx上一点P11),过点B30)作直线ABx轴,直线AB与直线yx交于点A.直线yx+3y轴交于点C,与直线AB交于点DDCO60°

    1)点C的坐标为      ,点D的坐标为      

    2)在直线AB上有一点M,使PBM是直角三角形,求点M的坐标;

    3)在直线yx+3上有一点N,使PN+ND最小,求此时点N坐标,及PN+ND的最小值.

    10.如图1,在平面直角坐标系中,四边形OABC的顶点A和顶点C分别在x轴正半轴和y轴正半轴上,CBOACB6OA12AB6

    1)已知DE分别是线段OCOB上的点,OD10OE2BE,直线DEx轴于点F.求直线DE的解析式.

    2)如图2,点P是四边形OABC内一个动点,当PO+PC+PA最小时,请直接写出点P的坐标.

    11.如图,在平面直角坐标系中,抛物线yx2+bx+cx轴交于BC两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为DB30),A0

    1)求抛物线解析式及D点坐标;

    2)如图1P为线段OB上(不与OB重合)一动点,过点Py轴的平行线交线段AB于点M,交抛物线于点N,点NNKBABA于点K,当MNKMPB的面积相等时,在X轴上找一动点Q,使得CQ+QN最小时,求点Q的坐标及CQ+QN最小值;

    12.在平面直角坐标系中,抛物线yx2x2x轴于AB两点,交y轴于点C,点C关于抛物线对称轴对称的点为D

    1)求点D的坐标及直线BD的解析式;

    2)如图1,连接CDADBD,点E为线段CD上一动点.过EEFBD交线段ADF点,当CEF的面积最大时,在x轴上找一点P,在y轴上找一点Q,使EQ+PQ+BP最小,并求其最小值;


     

    相关试卷

    第十二讲 二次函数及其图像与性质(强化训练)(原卷版)-备战中考数学一轮复习专题讲义+强化训练(全国通用): 这是一份第十二讲 二次函数及其图像与性质(强化训练)(原卷版)-备战中考数学一轮复习专题讲义+强化训练(全国通用),共11页。

    第十二讲 二次函数及其图像与性质(强化训练)(含答案析)-备战中考数学一轮复习专题讲义+强化训练(全国通用): 这是一份第十二讲 二次函数及其图像与性质(强化训练)(含答案析)-备战中考数学一轮复习专题讲义+强化训练(全国通用),共22页。

    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十讲 一次函数的应用(强化训练): 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第十讲 一次函数的应用(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第十讲一次函数的应用强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第十讲一次函数的应用强化训练原卷版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十三讲 一次函数、二次函数背景下的最值问题(强化训练)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map