所属成套资源:2021-2022学年高二数学新教材知识讲学(人教A版选择性必修第一册)
- 专题13 圆与圆的位置关系 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案 学案 0 次下载
- 专题14 第二章 复习与检测 核心素养练习 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
- 专题15 椭圆及其标准方程(核心素养练习)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
- 专题15 椭圆及其标准方程(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案 学案 0 次下载
- 专题16 椭圆的简单几何性质(核心素养练习)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
专题14 第二章 复习与检测 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)
展开
这是一份专题14 第二章 复习与检测 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册),文件包含专题14第二章复习与检测知识精讲解析版docx、专题14第二章复习与检测知识精讲原卷版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
第二章 复习与检测第三章 一 知识结构图内 容考点关注点 第二章 复习与检测直线的方程斜率是否存在圆的方程 圆心,半径直线与圆的位置关系圆心到直线的距离与半径的关系圆与圆位置关系圆心距与两圆半径的关系 二.学法指导1.求直线的倾斜角与斜率的注意点(1)求直线的倾斜角,关键是依据平面几何的知识判断直线向上方向与x轴正向之间所成的角,同时应明确倾斜角的范围.(2)当直线的倾斜角α∈[0°,90°)时,随着α的增大,直线的斜率k为非负值且逐渐变大;当直线的倾斜角α∈(90°,180°)时,随着α的增大,直线的斜率k为负值且逐渐变大.2.求直线方程的方法求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件是否具备时要另行讨论条件不满足的情况.3.距离公式的运用(1)距离问题包含两点间的距离,点到直线的距离,两平行直线间的距离.(2)牢记各类距离的公式并能直接应用,解决距离问题时,往往将代数运算与几何图形的直观分析相结合.(3)这类问题是高考考查的热点,在高考中常以选择题、填空题出现,主要考查距离公式以及思维能力.4.对称问题的求解策略(1)点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解.熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.(2)点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1;②两点的中点在已知直线上.(3)直线关于点的对称问题,可转化为直线上的点关于此点对称的问题,这里需要注意的是两对称直线是平行的.我们往往利用平行直线系去求解.5求圆的方程的方法求圆的方程主要是联立圆系方程、圆的标准方程和一般方程,利用待定系数法解题.6.采用待定系数法求圆的方程的一般步骤(1)选择圆的方程的某一形式.(2)由题意得a, b, r(或D, E, F)的方程(组).(3)解出a, b, r(或D, E, F).(4)代入圆的方程.6.判断直线和圆的位置关系,一般用代数法或几何法,为避免繁杂的运算,最好用几何法,其解题思路是:先求出圆心到直线的距离d,然后比较所求距离d与半径r的大小关系,进而判断直线和圆的位置关系.7.判断两圆位置关系的两种方法比较(1)几何法是利用两圆半径和或差与圆心距作比较,得到两圆位置关系.(2)代数法是把两圆位置关系的判断完全转化为代数问题,转化为方程组解的组数问题,从而体现了几何问题与代数问题之间的相互联系,但这种方法只能判断出不相交、相交和相切三种位置关系,而不能像几何法一样,能准确判断出外离、外切、相交、内切和内含五种位置关系.三.知识点贯通知识点1 直线的倾斜角与斜率例题1.已知某直线l的倾斜角α=45°,又P1(2,y1),P2(x2,5),P3(3,1)是此直线上的三点,求x2,y1的值.【解析】 由α=45°,故直线l的斜率k=tan 45°=1,又P1,P2,P3都在此直线上,故kP1P2=kP2P3=kl,即==1,解得x2=7,y1=0.知识点二 求直线的方程例题2:已知△ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x-y-5=0,AC边上的高BH所在的直线方程为x-2y-5=0.求:(1)AC所在的直线的方程;(2)点B的坐标.【解析】 (1)因为AC⊥BH,所以设AC所在的直线的方程为2x+y+t=0.把A(5,1)代入直线方程2x+y+t=0中,解得t=-11.所以AC所在的直线的方程为2x+y-11=0.(2)设B(x0,y0),则AB的中点为.联立得方程组化简得解得故B(-1,-3).知识点三 两直线的平行、垂直及距离问题 例题3 . 已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a,b的值.(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.【解析】(1)∵l1⊥l2,∴a(a-1)+(-b)·1=0. 即a2-a-b=0.①又点(-3,-1)在l1上,∴-3a+b+4=0.②由①②解得a=2,b=2.(2)∵l1∥l2且l2的斜率为1-a,∴l1的斜率也存在,=1-a,即b=.故l1和l2的方程可分别表示为l1:(a-1)x+y+=0,l2:(a-1)x+y+=0.∵原点到l1与l2的距离相等,∴4=,解得a=2或a=.因此或知识点四 对称问题例题4.光线通过点A(2, 3),在直线l:x+y+1=0上反射,反射光线经过点B(1,1),试求入射光线和反射光线所在直线的方程.【解析】 设点A(2,3)关于直线l的对称点为A′(x0,y0),则解之得,A′(-4,-3).由于反射光线经过点A′(-4,-3)和B(1,1),所以反射光线所在直线的方程为y-1=(x-1)·,即4x-5y+1=0.解方程组得反射点P.所以入射光线所在直线的方程为y-3=(x-2)·,即5x-4y+2=0.综上,入射光线和反射光线所在直线的方程分别为5x-4y+2=0,4x-5y+1=0.知识点五 求圆的方程例题5已知圆C和y轴相切,圆心在直线x-3y=0上,且被直线y=x截得的弦长为2,求圆C的方程.【解析】设圆C的方程为(x-a)2+(y-b)2=r2.由圆C与y轴相切得|a|=r,①又圆心在直线x-3y=0上,∴a-3b=0,②圆心C(a,b)到直线y=x的距离为d=,由于弦心距d,半径r及弦的一半构成直角三角形,∴+()2=r2.③联立①②③解方程组可得或故圆C的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.知识点六 直线与圆的位置关系例题6.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.【解析】 圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.五 易错点分析易错一 求直线方程例题7.已知直线l经过直线2x+y-5=0与x-2y=0的交点.(1)点A(5,0)到l的距离为3,求l的方程;(2)求点A(5,0)到l的距离的最大值.【解析】(1)经过两已知直线交点的直线系方程为2x+y-5+λ(x-2y)=0, 即(2+λ)x+(1-2λ)y-5=0,所以=3,即2λ2-5λ+2=0,所以λ=或λ=2.所以l的方程为x=2或4x-3y-5=0.(2)由解得交点P(2,1),过P作任一直线l(图略),设d为点A到l的距离,则d≤|PA|(当l⊥PA时等号成立).所以dmax=|PA|=.误区警示
求直线方程时,斜率不确定是否存在时,要讨论直线斜率是否存在。
相关试卷
这是一份专题21 第三章 复习与检测(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册),文件包含专题21第三章复习与检测知识精讲解析版docx、专题21第三章复习与检测知识精讲原卷版docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份专题21 第三章 复习与检测(核心素养练习)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册),文件包含专题21第三章复习与检测核心素养练习解析版docx、专题21第三章复习与检测核心素养练习原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份专题14 第二章 复习与检测 核心素养练习 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册),文件包含专题14第二章复习与检测核心素养练习解析版docx、专题14第二章复习与检测核心素养练习原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。