2022年九年级中考复习压轴题专项练习:动点产生的直角三角形问题(无答案)
展开
这是一份2022年九年级中考复习压轴题专项练习:动点产生的直角三角形问题(无答案),共11页。试卷主要包含了解答题等内容,欢迎下载使用。
1. 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).
(1)当k=-2时,求反比例函数的解析式;
(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
2. 如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).
(1)试说明△ABC是等腰三角形;
(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.
① 求S与t的函数关系式;
② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;
③在运动过程中,当△MON为直角三角形时,求t的值.
3. 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).
(1)当k=-2时,求反比例函数的解析式;
(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
4. 如图,抛物线y=eq \f(1,3)x2+bx+c与x轴交于A(3,0),B(-1,0)两点,过点B作直线BC⊥x轴,交直线y=-2x于点C.
(1)求该抛物线的解析式;
(2)求该抛物线的顶点D的坐标,并判断顶点D是否在直线y=-2x上;
(3)点P是抛物线上一动点,是否存在这样的点P(点A除外),使△PBC是以BC为直角边的直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.
5. 如图,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究:△ABC的最大面积?
6. 已知抛物线与轴交于、两点(点在点的左侧),与轴交于点,且.
(1)求这个抛物线的函数解析式;
(2)求点A到直线BC的距离;
(3)将沿直线AC翻折,使点与点重合,连结,点Q是的中点,在抛物线上是否存在一点,使是以QC为直角边的直角三角形,如果存在,求出点的坐标,如果不存在,请说明理由.
7. 已知:直线与y轴交于A,与轴交于D,抛物线与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0).
(1)求抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.
8. 如图,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、B、C的坐标;
(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.
9. 如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒.
(1)求的度数.
(2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度.
(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标.
(4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由.
①
A
C
B
Q
D
O
P
x
y
30
10
O
5
t
S
②
10. 如图,已知抛物线y=ax2+bx+c经过A (1,0)、B(0,3)及C(3,0)点,动点D从原点O开始沿OB方向以每秒1个单位长度移动,动点E从点C开始沿CO方向以每秒1个长度单位移动,动点D、E同时出发,当动点E到达原点O时,点D、E停止运动.
(1)求抛物线的解析式及顶点P的坐标;
(2)若F(﹣1,0),求△DEF的面积S与E点运动时间t的函数解析式;当t为何值时,△DEF的面积最大?最大面积是多少?
(3)当△DEF的面积最大时,抛物线的对称轴上是否存在一点N,使△EBN是直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.
11. 如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求该抛物线的对称轴和线段AB的长;
(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求△AED的面积的最大值;
(3)如图2,点G是线段AB上的一动点,点H在第一象限,AC∥GH,AC=GH,△ACG与△A′CG关于直线CG对称,是否存在点G,使得△A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
12. 如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
相关试卷
这是一份挑战中考数学压轴题——因动点产生的等腰三角形问题,共8页。
这是一份中考数学二轮专项复习——动点、最值问题(压轴题)(含答案),共25页。
这是一份2023年中考数学压轴题专项训练 压轴题10二次函数与几何动点问题(试题+答案),文件包含2023年中考数学压轴题专项训练压轴题10二次函数与几何动点问题答案docx、2023年中考数学压轴题专项训练压轴题10二次函数与几何动点问题试题docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。