高考物理一轮复习课时分层练习3.3《牛顿运动定律的综合应用》(含答案详解)
展开
课时分层作业 九
牛顿运动定律的综合应用
(45分钟 100分)
【基础达标题组】
一、选择题(本题共10小题,每小题6分,共60分。1~6题为单选题,7~10题为多选题)
1.图甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的点表示人的重心。图乙是根据传感器采集到的数据画出的力—时间图线。两图中a~g各点均对应,其中有几个点在图甲中没有画出。重力加速度g取10 m/s2。根据图象分析可得 ( )
A.人的重力为1 500 N
B.c点位置人处于超重状态
C.e点位置人处于失重状态
D.d点的加速度小于f点的加速度
【解析】选B。由图可知人的重力为500 N,故A错误;c点位置人的支持力750 N>500 N,处于超重状态,故B正确;e点位置人的支持力650 N>500 N,处于超重状态,故C错误;d点的加速度为20 m/s2大于f点的加速度为10 m/s2,故D错误。
2.如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则 ( )
A.物块可能匀速下滑
B.物块仍以加速度a匀加速下滑
C.物块将以大于a的加速度匀加速下滑
D.物块将以小于a的加速度匀加速下滑
【解析】选C。对物块进行受力分析,设斜面的角度为θ,可列方程mgsin θ
-μmgcos θ=ma,sin θ-μcos θ=,当加上力F后,由牛顿第二定律得(mg+F)sin θ-μ(mg+F)cos θ=ma1,即mgsin θ-μmgcos θ+Fsin θ-
μFcos θ=ma1,ma+Fsin θ-μFcos θ=ma1,Fsin θ-μFcos θ=F(sin θ-
μcos θ)=,大于零,代入上式知,a1大于a。物块将以大于a的加速度匀加速下滑。只有C项正确。
3.应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入。例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出。对此现象分析正确的是 ( )
A.受托物体向上运动的过程中,物体始终处于超重状态
B.受托物体向上运动的过程中,物体始终处于失重状态
C.在物体离开手的瞬间,物体的加速度大于重力加速度
D.在物体离开手的瞬间,手的加速度大于重力加速度
【解析】选D。物体在手掌的推力作用下,由静止竖直向上加速时,物体处于超重状态。当物体离开手的瞬间,只受重力作用,物体的加速度等于重力加速度,处于完全失重状态,故A、B、C错误;物体离开手的前一时刻,手与物体具有相同的速度,物体离开手的下一时刻,手的速度小于物体的速度,即在物体离开手的瞬间这段相同的时间内,手的速度变化量大于物体的速度变化量,故手的加速度大于物体的加速度,也就是手的加速度大于重力加速度,故D正确。
4.(烟台模拟)如图所示,横截面为直角三角形的三棱柱质量为M,放在粗糙的水平地面上,两底角中其中一个角的角度为α(α>45°)。三棱柱的两倾斜面光滑,上面分别放有质量为m1和m2的两物体,两物体间通过一根跨过定滑轮的细绳相连接,定滑轮固定在三棱柱的顶端,若三棱柱始终处于静止状态。不计滑轮与绳以及滑轮与轮轴之间的摩擦,重力加速度大小为g,则将m1和m2同时由静止释放后,下列说法正确的是 ( )
A.若m1=m2,则两物体可静止在斜面上
B.若m1=m2tanα,则两物体可静止在斜面上
C.若m1=m2,则三棱柱对地面的压力小于(M+m1+m2)g
D.若m1=m2,则三棱柱所受地面的摩擦力大小为零
【解析】选C。若m1=m2,m2的重力沿斜面向下的分力大小为m2gsin(90°-α),m1的重力沿斜面向下的分力大小为m1gsin α,由于α>45°,则m2gsin(90°-α)
<m1gsin α,则m1将沿斜面向下加速运动,m2将沿斜面向上加速运动,A错误。要使两物体都静止在斜面上,应满足:m2gsin(90°-α)=m1gsin α,即有m1=m2cot α,B错误。若m1=m2,设加速度大小为a,对两个物体及斜面整体,由牛顿第二定律得,竖直方向有FN-(M+m1+m2)g=m2asin(90°-α)-m1asin α<0,即地面对三棱柱的支持力FN<(M+m1+m2)g,则三棱柱对地面的压力小于(M+m1+m2)g;水平方向有Ff=m1acosα+m2acos(90°-α)>0,C正确,D错误。
5.(山师附中模拟)如图所示,在光滑平面上有一静止小车,小车上静止地放置着一小物块,物块和小车间的动摩擦因数为μ=0.3,用水平恒力F拉动小车,物块的加速度为a1,小车的加速度为a2。当水平恒力F取不同值时,a1与a2的值可能为(当地重力加速度g取10 m/s2) ( )
A.a1=2 m/s2,a2=3 m/s2
B.a1=3 m/s2,a2=2 m/s2
C.a1=5 m/s2,a2=3 m/s2
D.a1=3 m/s2,a2=5 m/s2
【解析】选D。当物块与小车间的静摩擦力小于μmg时,物块与小车一起运动,且加速度相等,最大共同加速度为amax=μg=3 m/s2,故A、B错误;当F>μ(M+m)g时,小车的加速度大于物块的加速度,此时物块与小车发生相对运动,此时物块的加速度最大,由牛顿第二定律得:a1==μg=3 m/s2,小车的加速度a2>3 m/s2,故C错误,D正确。
【加固训练】
如图所示,A、B两物块叠放在一起,放在光滑地面上,已知A、B物块的质量分别为M、m,物块间粗糙。现用水平向右的恒力F1、F2先后分别作用在A、B物块上,物块A、B均不发生相对运动,则F1、F2的最大值之比为 ( )
A.1∶1 B.M∶m
C.m∶M D.m∶(m+M)
【解析】选B。F1作用在A物块上,由牛顿第二定律,F1=(M+m)a1。设A、B物块间的最大静摩擦力为Ff,对B物块,则有Ff=ma1。F2作用在B物块上,由牛顿第二定律,F2=(M+m)a2。对A物块,则有Ff=Ma2,联立解得:F1、F2的最大值之比为F1∶F2=M∶m,选项B正确。
6.如图所示,一轻质弹簧的一端系一质量为m的小球,另一端固定在倾角为37°的光滑斜面体顶端,弹簧与斜面平行,在斜面体以大小为g的加速度水平向左做匀加速直线运动的过程中,小球始终相对于斜面静止。已知弹簧的劲度系数为k,则该过程中弹簧的形变量为(已知:sin 37°=0.6,cos 37°=0.8) ( )
A. B. C. D.
【解析】选A。假设小球只受到重力和斜面的支持力且和斜面一起以加速度a0向左匀加速运动,则a0=gtan 37°<g,当斜面体和小球以加速度a=g水平向左匀加速运动时,受到重力、支持力和弹簧沿斜面向下的弹力作用,设弹簧的形变量为x,则有FNsin 37°+kxcos 37°=mg,FNcos 37°=kxsin 37°+mg,解得x=,A正确。
7.(十堰模拟)质量分别为M和m的物块形状大小均相同,将它们通过轻绳跨过光滑定滑轮连接,如图甲所示,绳子平行于倾角为α的斜面,M恰好能静止在斜面上,不考虑M、m与斜面之间的摩擦。若互换两物块位置,按图乙放置,然后释放M,斜面仍保持静止。则下列说法正确的是
( )
A.轻绳的拉力等于Mg
B.轻绳的拉力等于mg
C.M运动的加速度大小为(1-sin α)g
D.M运动的加速度大小为g
【解析】选B、C、D。互换位置前,M静止在斜面上,则有:Mgsin α=mg,互换位置后,对M有Mg-FT=Ma,对m有:FT′-mgsin α=ma,又FT=FT′,解得:a=(1-
sin α)g=g,FT=mg,故A错,B、C、D对。
8.如图所示,一质量为m的小物体以一定的速率v0滑到水平传送带上左端的A点,当传送带始终静止时,已知物体能滑过右端的B点,经过的时间为t0,则下列判断正确的是 ( )
A.若传送带逆时针方向运行且保持速率不变,则物体也能滑过B点,且用时为t0
B.若传送带逆时针方向运行且保持速率不变,则物体可能先向右做匀减速运动直到速度为零,然后向左加速,因此不能滑过B点
C.若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将一直做匀速运动滑过B点,用时一定小于t0
D.若传送带顺时针方向运动,当其运行速率(保持不变)v>v0时,物体一定向右一直做匀加速运动滑过B点,用时一定小于t0
【解析】选A、C。传送带静止时,物体滑上传送带后受水平向左的滑动摩擦力μmg,设到达B点的速度为vB。由-=2(-μg)L可得:vB=,若传送带逆时针运行,物体仍受向左的摩擦力μmg,同样由上式分析,一定能匀减速至右端,速度为vB,用时也一定仍为t0,故选项A对,而B错;若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将不受摩擦力的作用,一直做匀速运动滑至B端,因为匀速通过,故用时一定小于t0,故选项C对;当其运行速率(保持不变)v>v0时,开始物体受到向右的摩擦力的作用,做加速运动,运动有两种可能:若物体加速到速度v还未到达B端时,则先匀加速运动后匀速运动,若物体速度一直未加速到v时,则一直做匀加速运动,故选项D错。
9.如图甲所示,在水平地面上有一长木板B,其上叠放木块A,假定木板与地面之间、木块和木板之间的最大静摩擦力都和滑动摩擦力相等,用一水平力F作用于B,A、B的加速度与F的关系如图乙所示,重力加速度g取10 m/s2,则下列说法中正确的是 ( )
A.A的质量为0.5 kg
B.B的质量为1.5 kg
C.B与地面间的动摩擦因数为0.2
D.A、B间的动摩擦因数为0.4
【解析】选A、C、D。由图可知,二者开始时相对地面静止,当拉力为3 N时开始相对地面滑动;故B与地面间的最大静摩擦力为3 N;当拉力为9 N时,AB相对滑动,此时A的加速度为4 m/s2;当拉力为13 N时,B的加速度为8 m/s2;对A分析可知,μ1g=4 m/s2;解得:AB间的动摩擦因数μ1=0.4;对B分析可知,13 N-3 N-μ1mAg=mB×8 m/s2
对整体有:9 N-3 N=(mA+mB)×4 m/s2
联立解得:mA=0.5 kg;mB=1 kg;
则由μ2(mA+mB)g=3 N解得,B与地面间的动摩擦因数为μ2=0.2;故A、C、D正确,B错误。
10.(2015·海南高考)如图,升降机内有一固定斜面,斜面上放一物块。开始时,升降机做匀速运动,物块相对于斜面匀速下滑。当升降机加速上升时 ( )
A.物块与斜面间的摩擦力减小
B.物块与斜面间的正压力增大
C.物块相对于斜面减速下滑
D.物块相对于斜面匀速下滑
【解析】选B、D。当升降机加速上升时,物块有竖直向上的加速度,处于超重状态,物块与斜面间的正压力增大,根据滑动摩擦力公式Ff=μFN可知接触面间的正压力增大,物块与斜面间的摩擦力增大,故A错误,B正确;设斜面的倾角为θ,物块的质量为m,当匀速运动时有mgsinθ=μmgcosθ,即sinθ=μcosθ。假设升降机以加速度a向上运动时,把a分解为垂直斜面方向与沿斜面方向,两个分量acosθ、asinθ。垂直斜面方向上,物块与斜面相对静止,对物块分析,压力FN=m(g+a)cosθ,Ff=μm(g+a)cosθ,因为sinθ=μcosθ,所以m(g+a)sinθ
=μm(g+a)cosθ,即在沿斜面方向物块的加速度为asinθ,所以物块的加速度也为a,故物块相对于斜面匀速下滑,C错误,D正确。故选B、D。
二、计算题(15分。需写出规范的解题步骤)
11.如图所示,水平地面上放置一个质量为m的物体,在与水平方向成θ角、斜向右上方的拉力F的作用下沿水平地面运动。物体与地面间的动摩擦因数为μ,重力加速度为g。求:
(1)若物体在拉力F的作用下能始终沿水平面向右运动且不脱离地面,拉力F的大小范围。
(2)已知m=10 kg,μ=0.5,g=10 m/s2,若F的方向可以改变,求使物体以恒定加速度a=5 m/s2 向右做匀加速直线运动时,拉力F的最小值。
【解析】(1)要使物体运动时不离开地面,
应有:Fsinθ≤mg
要使物体能一直向右运动,
应有:Fcosθ≥μ(mg-Fsinθ)
联立解得:≤F≤
(2)根据牛顿第二定律得
Fcosθ-μ(mg-Fsinθ)=ma
解得:F=
上式变形得F=
其中α=arcsin
当sin(θ+α)=1时,F有最小值
解得:Fmin=
代入相关数据解得:Fmin=40 N
答案:(1)≤F≤
(2)40 N
【总结提升】解临界极值问题的三种常用方法
(1)极限法:把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的。
(2)假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题。
(3)数学方法:将物理过程转化为数学表达式,根据数学表达式解出临界条件。
【能力拔高题组】
1.(8分)(多选)如图甲所示,水平地面上固定一足够长的光滑斜面,斜面顶端有一理想定滑轮,一轻绳跨过滑轮,绳两端分别连接小物块A和B。保持A的质量不变,改变B的质量m,当B的质量连续改变时,得到A的加速度a随B的质量m变化的图线如图乙所示。设加速度沿斜面向上的方向为正方向,空气阻力不计,重力加速度g取9.8 m/s2,斜面的倾角为θ,下列说法中正确的是
( )
A.若θ已知,可求出A的质量
B.若θ未知,可求出图乙中a1的值
C.若θ已知,可求出图乙中a2的值
D.若θ已知,可求出图乙中m0的值
【解题指导】(1)根据牛顿第二定律,可得加速度的表达式。
(2)利用好乙图中三个点:m=0时,m=m0时,m>>mA时。
【解析】选B、C。由牛顿第二定律可知mg-mAgsin θ=(m+mA)a,解得加速度a=,当m=0时,得a2=gsin θ,故C正确;当m≫mA时a1=g,故B正确;无法求出A的质量,故A错误;当加速度a=0时,可知m0=mAsin θ,无法求出m0的值,故D错误。
2.(17分)传送带以稳定的速度v=6 m/s顺时针转动,传送带与水平面的夹角θ=37°,现在将一质量m=2 kg的物体(可以看作质点)放在其底端,传送带顶端平台上的人通过轻绳以恒定的拉力F=20 N拉物体,经过一段时间物体被拉到斜面顶端的平台上,如图所示,已知传送带底端与顶端的竖直高度H=6 m,物体与传送带之间的动摩擦因数为0.25,设最大静摩擦力等于滑动摩擦力。(g取
10 m/s2,sin 37°=0.6,cos 37°=0.8)
(1)求物体从底端运动到顶端所用时间。
(2)若物体与传送带达到速度相等的瞬间,突然撤去拉力,物体还需要多长时间离开传送带?
【解析】(1)物体开始运动时的加速度为a1则:
F+μmg cos 37°-mgsin 37°=m a1
解得:a1=6 m/s2
物体达到和传送带速度相等历时t1,根据运动学公式,有:v=a1 t1,故 t1=1 s
s=t1=×1 m=3 m
然后对物体受力分析:
F-μmgcos37°-mgsin37°=ma2
解得:a2=2 m/s2
再经t2到达顶端,则:
-s=v t2+a2
解得:t2=1 s或者t2=-7 s(舍去)
所以物体到达顶端共历时
t=t1+t2=2 s。
(2)当撤去拉力时,对物体受力分析得:
mgsin 37°-μmg cos 37°=ma3
a3=4 m/s2,方向沿斜面向下,故物体做匀减速直线运动,经时间t3速度减到0,物体上升的距离为:s2=t3
根据速度—时间关系公式:a3 t3=v
解得:t3= s
s2=4.5 m,故物体没有上升到顶端,从而沿斜面下滑到底端离开传送带
设从速度为0滑回底端的时间为t4则:
a3 =s+s2,解得:t4= s。
所以物体还需要 s离开传送带。
答案:(1)2 s (2) s
【加固训练】
如图所示,质量M=1 kg的木板静置于倾角θ=37°、足够长的固定光滑斜面底端。质量m=1 kg的小物块(可视为质点)以初速度v0=4 m/s从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的F=3.2 N的恒力。若小物块恰好不从木板的上端滑下,求木板的长度l为多少?已知小物块与木板之间的动摩擦因数μ=0.8,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8。
【解析】由题意,小物块向上做匀减速运动,木板向上做匀加速运动,当小物块运动到木板的上端时,恰好和木板共速。
设小物块的加速度为a,由牛顿第二定律得,
mgsin θ+μmgcos θ=ma,
设木板的加速度为a′,由牛顿第二定律得,
F+μmgcos θ-Mgsin θ=Ma′,
设二者共速的速度为v,经历的时间为t,由运动学公式得
v=v0-at,v=a′t;
小物块的位移为x,木板的位移为x′,由运动学公式得,
x=v0t-at2,x′=a′t2;
小物块恰好不从木板上端滑下,
有x-x′=l,
联立解得l=0.5 m。
答案:0.5 m
江苏版高考物理一轮复习课时分层作业9牛顿运动定律的综合应用含答案: 这是一份江苏版高考物理一轮复习课时分层作业9牛顿运动定律的综合应用含答案,文件包含江苏版高考物理一轮复习课时分层作业9参考答案与精析doc、江苏版高考物理一轮复习课时分层作业9牛顿运动定律的综合应用doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
3.3牛顿运动定律的综合应用-2023年高考物理一轮复习提升核心素养: 这是一份3.3牛顿运动定律的综合应用-2023年高考物理一轮复习提升核心素养,文件包含33牛顿运动定律的综合应用解析版docx、33牛顿运动定律的综合应用原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
高考物理一轮复习课时练9牛顿运动定律的综合应用含答案: 这是一份高考物理一轮复习课时练9牛顿运动定律的综合应用含答案