专题01 数与式的运算-初升高数学衔接必备教材(解析版)
展开
这是一份专题01 数与式的运算-初升高数学衔接必备教材(解析版),共19页。
专题01数与式的运算
高中必备知识点1:绝对值
绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:
绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.
两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.
典型考题
【典型例题】
阅读下列材料:
我们知道的几何意义是在数轴上数对应的点与原点的距离,即=,也就是说,表示在数轴上数与数0对应的点之间的距离;这个结论可以推广为表示在数轴上数与数对应的点之间的距离;
例1解方程||=2.因为在数轴上到原点的距离为2的点对应的数为,所以方程||=2的解为.
例2解不等式|-1|>2.在数轴上找出|-1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|-1|=2的解为=-1或=3,因此不等式|-1|>2的解集为<-1或>3.
例3解方程|-1|+|+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的对应的点在1的右边或-2的左边.若对应的点在1的右边,可得=2;若对应的点在-2的左边,可得=-3,因此方程|-1|+|+2|=5的解是=2或=-3.
参考阅读材料,解答下列问题:
(1)方程|+2|=3的解为 ;
(2)解不等式:|-2|<6;
(3)解不等式:|-3|+|+4|≥9;
(4)解方程: |-2|+|+2|+|-5|=15.
【答案】(1)或x=-5;(2)-4<x<8;(3)x≥或x≤-5;(4)或 .
【解析】
(1)由已知可得x+2=3或x+2=-3
解得或x=-5.
(2)在数轴上找出|-2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8,
∴方程|-2|=6的解为x=-4或x=8,∴不等式|-2|<6的解集为-4<x<8.
(3)在数轴上找出|-3|+|+4|=9的解.
由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x的值.
∵在数轴上3和-4对应的点的距离为7,∴满足方程的x对应的点在3的右边或-4的左边.
若对应的点在3的右边,可得x=4;若对应的点在-4的左边,可得x=-5,
∴方程|-3|+|+4|=9的解是x=或x=-5,
∴不等式|-3|+|+4|≥9的解集为x≥或x≤-5.
(4)在数轴上找出|-2|+|+2|+|-5|=15的解.
由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x的值.
∵在数轴上-2和5对应的点的距离为7,∴满足方程的x对应的点在-2的左边或5的右边.
若对应的点在5的右边,可得;若对应的点在-2的左边,可得,
∴方程|-2|+|+2|+|-5|=15的解是或 .
【变式训练】
实数在数轴上所对应的点的位置如图所示:化简 .
【答案】a-2b
【解析】
解:由数轴知:a<0,b>0,|a|>|b|,
所以b-a>0,a-b<0
原式=|a|-(b-a)-(b-a)
=-a-b+a-b+a
=a-2b
【能力提升】
已知方程组的解的值的符号相同.
(1)求的取值范围;
(2)化简:.
【答案】(1) −1
相关试卷
这是一份专题10 圆-初升高数学衔接必备教材(解析版),共31页。
这是一份专题11 代数部分验收A卷-初升高数学衔接必备教材(解析版),共11页。试卷主要包含了若a<1,化简-1结果为,不等式组的解集是,下列运算正确的是,抛物线y=﹣,分式方程, 的解为.等内容,欢迎下载使用。
这是一份专题02 分解因式-初升高数学衔接必备教材(解析版),共18页。试卷主要包含了十字相乘法,首项系数不为1的十字相乘法等内容,欢迎下载使用。