搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    第8讲 正弦定理余弦定理面积公式学生学案01
    第8讲 正弦定理余弦定理面积公式学生学案02
    第8讲 正弦定理余弦定理面积公式学生学案03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教B版 (2019)必修 第四册9.1.2 余弦定理导学案

    展开
    这是一份高中数学人教B版 (2019)必修 第四册9.1.2 余弦定理导学案,共7页。

    第八讲  解三角形

    [玩前必备]

    1正弦定理

    在一个三角形中,各边和它所对角的正弦的比相等,即.

    2解三角形

    一般地,把三角形的三个角ABC和它们的对边abc叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形

    3.余弦定理

    余弦定理

    公式表达

    a2b2c22bccos A

    b2a2c22accos_B

    c2a2b22abcos_C

    余弦定理

    语言叙述

    三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍

    推论

    cos A

    cos B

    cos C

     

    4.三角形常用面积公式

    (1)Sa·ha(ha表示边a上的高)

    (2)Sabsin Cacsin Bbcsin A

    [玩转典例]

    题型一 正弦定理

    【例1】(1)(2020·陕西高二期中)在△ABC中,B=135°,C=15°,a=5,则此三角形的最大边长为    

    (2)在中,若,则______.

     

     

    玩转跟踪

    1.(2020·甘肃高二期中)在△中,,则等于(    )

    A. B. C. D.9

    2.在中,若,则______.

    题型二 余弦定理

    【例2】(1)(2020·上海曹杨二中高三月考)在△的内角的对边分别为,若,则的值为     

    (2)(2020·上海市复兴高级中学高一期末)在,若,则__________________.

    玩转跟踪

    1.(2020·河南高二月考)在中,角的对边分别是,若,则_______.

    2.在中,,则边长__________.

    3.在中,,则______.

    题型三 外接圆的半径

    【例3】(2020·甘肃高二期中)已知△的两边长分别为2,3,这两边的夹角的余弦值为,则△的外接圆的直径为(   

    A. B. C. D.

    玩转跟踪

    1.(2020·江西高二月考)已知等腰三角形的底边长为,一腰长为,则它的外接圆半径为(  )

    A. B. C. D.

    2.(2020·扬州市邗江区蒋王中学高一月考)在中,若,则的值为_______

    题型四 正余弦定理运用--边角互换

    【例4】(1)(2020·安徽高二月考)设分别为内角的对边. 已知,则   

    1.                                                               B.1 C. D.2

    (2).(2020·山东省烟台第一中学高三月考)在中,内角ABC所对的边分别为.已知

    A. B. C. D.

    玩转跟踪

    1.(2020·河南高二月考)在中,角的对边分别为,则   

    A. B. C. D.

    2.(2020·黑龙江双鸭山一中高一期末)在中,已知,且满足,则的面积为(  

    A.1 B.2 C. D.

    3.(2020·上海市奉贤中学高三开学考试)在中,角的对边分别为,若,则______.

    题型五 三角面积

    【例5】(1)(2020·贵州凯里一中高一月考)在中,内角的对边分别为,且,则的面积为(  )

    A. B. C. D.

    (2).(2020·辽宁高考模拟(理))在中,,则的面积为(  

    A.1 B.2 C. D.

    玩转跟踪

    1.(2020·全国高三)的内角A,B,C所对的边分别为a,b,c.若,则的面积为(   

    A.1 B.2 C. D.

    2.(2020·河南高三)在中,所对应边分别为,已知,且,则的面积为(    ).

    A.1 B. C. D.

    3.(2020·湖南长郡中学高二期末)在中,,其面积,则外接圆直径为(   

    A. B. C. D.

    题型六 三角形的个数

    【例6】(1)根据下面的条件解,则解唯一的是(   

    A. B.

    C. D.

    (2)(2020·陕西高二期末)已知在中,,若三角形有两解,则的取值范围是(  )

    A. B. C. D.

    玩转跟踪

    1.在中,如果,则此三角形解的情况是(   

    A.1解 B.两解 C.无解 D.不确定

    2.(2020·河北高一期末)在中,根据下列条件解三角形,其中有一解的是(   

    A.   B.

    C.  D.

    题型七 判断三角形的形状

    【例7】(2020·甘肃高二期中(理))在中,角的对边分别为,其面积为,若,则一定是(   

    A.等腰三角形 B.直角三角形

    C.等边三角形 D.等腰直角三角形

    玩转跟踪

    1.(2020·上海市北虹高级中学高一期中)在中,若,则是(  

    A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形

    2.在中,若等式成立,则的形状是(    ).

    A.等边三角形 B.直角三角形 C.锐角三角形 D.钝角三角形

    3.(2019·安徽高二开学考试)已知的内角ABC的对边分别是abc,若,则的形状是

    A.等边三角形 B.等腰直角三角形 C.锐角三角形 D.钝角

    玩转练习

    1.(2020·甘肃高二期中)已知分别是的三个内角所对的边,若,则等于(    

    A. B. C. D.

    2.(2020·甘肃高二期中)在△中,分别为角的对边,已知,面积,则等于(    )

    A. B. C. D.

    3.(2020·江苏海安高级中学高二月考)在中,根据下列条件解三角形,其中有两解的是(   

    A. B.

    C. D.

    4.(2019·安徽高一期末)在中,角的对边分别为,若,则  

    A.无解 B.有一解

    C.有两解 D.解的个数无法确定

    5.(2020·河北高一期末)在中,的外接圆的圆心,则   

    A. B.

    C. D.

    6.(2020·安徽高三月考(理))已知在中,角的对边分别为的面积等于,则外接圆的面积为()

    A. B. C. D.

    7.(2019·重庆一中高三月考)设的内角所对边分别为,已知的面积为,则的外接圆面积为(   

    A. B. C. D.

    8.(2020·上海交大附中高二月考)已知两内角的对边边长分别为,则“”是“”(    ).

    A.充分非必要条件 B.必要非充分条件

    C.充要条件 D.既非充分也非必要条件

    9.在中,如果,那么必是().

    A.直角三角形 B.等腰直角三角形

    C.钝角三角形 D.锐角三角形

    10.在中,是三角形的三条边,且方程有实数根,则该三角形是(   

    A.钝角三角形 B.直角或钝角三角形 C.锐角三角形 D.直角或锐角三角形

    11.(2019·云南高三月考(理))在中,内角所对的边分别为,则最短边的边长是__________________________.

    12.(2020·上海市第二中学高一期中)在中,,则角的大小为________.

    13.在中,若,且最大边长为14,则的面积是______.

    14.(2020·上海高三)在△中,角的对边分别为,其面积,则________

    15.(2020·湖北高三月考(理))在中,角所对的边分别是且满足,则___________.

     

    相关学案

    高考数学一轮复习第4章第8课时正弦定理、余弦定理的应用举例学案: 这是一份高考数学一轮复习第4章第8课时正弦定理、余弦定理的应用举例学案,共23页。

    通用版高考数学(理数)一轮复习第23讲《正弦定理和余弦定理》学案(含详解): 这是一份通用版高考数学(理数)一轮复习第23讲《正弦定理和余弦定理》学案(含详解),共10页。

    人教版新课标A必修51.1 正弦定理和余弦定理学案: 这是一份人教版新课标A必修51.1 正弦定理和余弦定理学案,共6页。学案主要包含了已知两角和一边解三角形等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第8讲 正弦定理余弦定理面积公式学生学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map