![2022年湖北省黄冈市思源实验学校九年级数学中考二模试题(word版含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12861913/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年湖北省黄冈市思源实验学校九年级数学中考二模试题(word版含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12861913/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年湖北省黄冈市思源实验学校九年级数学中考二模试题(word版含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12861913/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年湖北省黄冈市思源实验学校九年级数学中考二模试题(word版含答案)
展开
这是一份2022年湖北省黄冈市思源实验学校九年级数学中考二模试题(word版含答案),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省黄冈市思源实验学校2022年九年级数学中考二模试题
姓名:__________ 考号:__________分数:__________一、选择题(共8题,共24分)1、 2020的相反数是( )A. B. C.-2020 D.20202、我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为( )A.5.5×106 B.5.5×105 C.55×104 D.0.55×1063、 下列运算正确的是( )A.9 B.2C.3 D.4、 已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为( )A.10° B.20° C.30° D.40°5、 若式子在实数范围内有意义,则的取值范围是( )A. 且 B. C. 且 D. 6、 如图,在平面直角坐标系中,边长为2的正方形的边在轴上, 边的中点是坐标原点,将正方形绕点按逆时针方向旋转90°后,点的对应点的坐标是A.(-1,2) B.(1,4) C.(3,2) D.(-1,0)7、 已知关于x的分式方程﹣2=的解为正数,则k的取值范围为( )A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠18、 8、 如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是( )A. B. C. D.二、填空题(共8题,共24分)9、 分解因式:_________________10、 分式方程:的解为 __________________11、 一组数据1,7,8,5,4的中位数是a,则a的值是 .12、 如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为 .13、 用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为 .14、 二次函数y=﹣2x2﹣4x+5的最大值是 .15、 如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为 .16、 如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是 .三、解答题(共8题,共72分)17、 先化简,再求值: ,其中. 18、 已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值. 19、如图,在Rt△ABC中,∠ACB = 90°,D为AB的中点,AE∥DC,CE∥DA.(1)求证:四边形ADCE是菱形;(2)连接DE,若AC =,BC =2,求证:△ADE是等边三角形.20、 某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示) 21、 如图在平面直角坐标系中,一次函数的图像经过点、交反比例函数的图像于点,点在反比例函数的图像上,横坐标为,轴交直线于点,是轴上任意一点,连接、.(1)求一次函数和反比例函数的表达式;(2)求面积的最大值. 22、 如图,AB是⊙O的直径,C,D是⊙O上两点,且,连接OC,BD,OD.(1)求证:OC垂直平分BD;(2)过点C作⊙O的切线交AB的延长线于点E,连接AD,CD.①依题意补全图形;②若AD=6,,求CD的长. 23、 某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?24、 如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.
============参考答案============一、选择题1、 C.2、 B.3、AB、a3•(﹣a2)=﹣a5,故本选项错误;C、(﹣1)(+1)=5﹣1=4,故本选项正确;D、﹣(a2)2=﹣a4,故本选项错误;故选:C.4、 B解:∵直线m∥n,∴∠2+∠ABC+∠1+∠BAC=180°,∵∠ABC=30°,∠BAC=90°,∠1=40°,∴∠2=180°﹣30°﹣90°﹣40°=20°,故选:B.5、 A6、 C7、 B解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.8、 C二、填空题9、 10、х=-111、 5 .【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.12、 50° .【解答】解:∵AB∥CD,∠ACD=80°,∴∠BAC=100°,又∵AD平分∠BAC,∴∠DAC=∠BAC=50°,13、 4π .【分析】易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,14、 7.解:y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:15、 4和2.56.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.16、 14 . 【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.【点评】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.三、解答题17、318、 19、 证明:(1)∵ AE∥DC,CE∥DA,∴ 四边形ADCE是平行四边形.∵ 在Rt△ABC中, D为AB的中点,∴ AD= BD=CD=.∴ 四边形ADCE是菱形.(2)在Rt△ABC中,AC =,BC =2,∴ .∴ ∠CAB=30°.∵ 四边形ADCE是菱形.∴ AE = AD,∠EAD=2∠CAB=60°.∴ △ADE是等边三角形.20、 解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×=240(人);(4)列表得: ABCDA ABACADBBA BCBDCCACB CDDDADBDC ∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为=.21、 (1);(2)【详解】解:(1)设直线AB为把点、代入解析式得: 解得: 直线为 把代入得: 把代入: , (2)设 轴,则 由<<, 即当时, 22、 (1)证明:∵∴∠COD =∠COB.∵OD = OB,∴OC垂直平分BD.(2)解:①补全图形,如图所示.②∵CE是⊙O切线,切点为C,∴OC⊥CE于点C.记OC与BD交于点F,由(1)可知OC垂直BD,∴∠OCE=∠OFB=90°.∴DB∥CE.∴∠AEC=∠ABD.在Rt△ABD中,AD=6,,∴BD=8,AB=10.∴OA= OB=OC=5.由(1)可知OC平分BD,即DF= BF,∴BF=DF=4.∴.∴CF=2.在Rt△CFD中,.23、 【解答】解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.24、 解:(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得,∴,∴y=﹣﹣x+2;(2)∵△PAM≌△PBM,∴PA=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,∵AB=2,∴点P的纵坐标是1,∴1=﹣﹣x+2,∴x=﹣1+或x=﹣1﹣,∴P(﹣1﹣,1)或P(﹣1+,1);(3)CM=t﹣2,MG=CM=2t﹣4,MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,MF=MD=4﹣t,∴BF=4﹣4+t=t,∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;当t=时,S最大值为;(3)设点Q(m,0),直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣(x+2)+2,∴K(0,),H(,),∴OK2=,OH2=+,HK2=+,①当OK=OH时,=+,∴m2﹣4m﹣8=0,∴m=2+2或m=2﹣2;②当OH=HK时,+=+,∴m2﹣8=0,∴m=2或m=﹣2;③当OK=HK时,=+,不成立;综上所述:Q(2+2,0)或Q(2﹣2,0)或Q(2,0)或Q(﹣2,0);
相关试卷
这是一份2023-2024学年湖北省黄冈市麻城市思源实验学校九年级数学第一学期期末统考模拟试题含答案,共9页。试卷主要包含了在平面直角坐标系中,点E,若点A等内容,欢迎下载使用。
这是一份2023-2024学年湖北省黄冈市麻城市思源实验学校八上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了的算术平方根为等内容,欢迎下载使用。
这是一份2022-2023学年湖北省黄冈市麻城市思源实验学校数学七下期末复习检测模拟试题含答案,共7页。试卷主要包含了若,则的值,函数中自变量的取值范围是等内容,欢迎下载使用。