![高三数学试卷2020.4第1页](http://img-preview.51jiaoxi.com/3/3/12875894/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高三数学试卷2020.4第2页](http://img-preview.51jiaoxi.com/3/3/12875894/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高三数学答案2020.4第1页](http://img-preview.51jiaoxi.com/3/3/12875894/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高三数学答案2020.4第2页](http://img-preview.51jiaoxi.com/3/3/12875894/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2019-2020学年上海市各区二模试卷汇编
2019-2020学年上海市宝山区二模数学试卷及答案
展开
这是一份2019-2020学年上海市宝山区二模数学试卷及答案,文件包含高三数学答案20204docx、高三数学试卷20204docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
宝山区2019学年第二学期期中高三年级数学学科教学质量监测试卷(120分钟,150分)考生注意:1.本试卷包括试卷和答题纸两部分,答题纸另页,正反面;2.在本试卷上答题无效,必须在答题纸上的规定位置按照要求答题; 3.可使用符合规定的计算器答题. 一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分),考生应在答题纸的相应位置直接填写结果。1.己知复数z满足(其中,为虚数单位),则 . 2.函数的定义域是 . 3.计算行列式的值,=源 .4.已知双曲线C:的实轴与虚轴长度相等,则C的渐近线方程是 .5.已知无穷数列,,则数列的各项和为 . 6.一个圆锥的表面积为,母线长为,则其底面半径为 . 7.某种微生物的日增长率为,经过天后其数量由变化为,并且满足方程.实验检测,这种微生物经过一周数量由2.58个单位增长到14.86个单位,则增长率 .(精确到1%) 8.已知的展开式的常数项为第6项,则常数项为 . 9.某医院ICU从3名男医生和2名女医生中任选2位赴武汉抗疫,则选出的2位医生中至少有1位女医生的概率是 .10.已知方程的两个根是,若,则= . 11.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是 . 12.已知平面向量满足,,,,则的最小值是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.抛物线的准线方程是( )(A) (B) (C) (D) 14.若函数的图像关于直线对称,则的值为( )(A) 1 (B) (C) (D) 15.用数学归纳法证明 成立。那么,“当时,命题成立”是“对时,命题成立”的( )(A) 充分不必要条件. (B) 必要不充分条件.(C) 充要条件. (D) 既不充分也不必要条件.16.已知是定义在R上的奇函数,对任意两个不相等的正数,都有,则函数( )(A) 是偶函数,且在上单调递减. (B) 是偶函数,且在上单调递增.(C) 是奇函数,且单调递减. (D) 是奇函数,且单调递增.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在直三棱柱中,,,是的中点.(1)若三棱柱的体积为,求三棱柱的高;(2)若,求二面角的大小. 18.(本题满分14分,第1小题满分7分,第2小题满分7分)已知函数,,,,它们的最小正周期为.(1)若是奇函数,求和在上的公共递减区间;(2)若的一个零点为,求的最大值. 19.(本题满分14分,第1小题满分6分,第2小题满分8分)据相关数据统计,2019年底全国已开通5G基站13万个,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,今年一月份全国共建基站3万个.(1)如果从2月份起,以后的每个月比上一个月多建设2000个,那么,今年底全国共有基站多少万个。(精确到0.1万个)(2)如果计划今年新建基站60万个,到2022年底全国至少需要800万个,并且,今后新建的数量每年比上一年以等比递增,问2021年和2022年至少各建多少万个才能完成计划? (精确到1万个) 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知直线:和椭圆:相交于点.(1)当直线过椭圆的左焦点和上顶点时,求直线的方程;(2)点在上,若,求面积的最大值;(3)如果原点到直线的距离是,证明:为直角三角形. 21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)定义 设是无穷数列,若存在正整数使得对任意,均有(),则称是近似递增(减)数列,其中叫近似递增(减)数列的间隔数.(1)若,是不是近似递增数列,并说明理由;(2)已知数列的通项公式为,其前项的和为,若2是近似递增数列的间隔数,求的取值范围;(3)已知,证明是近似递减数列,并且4是它的最小间隔数.
相关试卷
这是一份2022年上海市宝山区高考数学二模试卷,共19页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份2021年上海市宝山区高考数学二模试卷,共22页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份2023年上海市宝山区高考数学二模试卷(含答案解析),共14页。