2022年中考数学二轮专题复习——分式方程的实际应用
展开
这是一份2022年中考数学二轮专题复习——分式方程的实际应用,共14页。
2022年中考数学二轮专题复习——分式方程的实际应用
1.在一次10km跑步锻炼中,先匀速跑了4km,之后提速20%并匀速跑完剩余路程,这样小致一共用了跑完全程,求小致前4km的速度是多少?
2.为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?
3.2020年为做好“精准扶贫”工作,某地第一次花费16000元购买了高原沃柑育苗若干株,为“加快产业扶贫,打赢脱贫攻坚战”,决定再次花费32000元购买同种高原沃柑育苗,第二次购买每株育苗价格比第一次每株育苗价格降低了20%,结果比第一次多买了960株,求第一次购买每株高原沃柑育苗多少元?
4.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?
5.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。
(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?
6.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了,结果提前11天完成任务,求实际平均每天施工多少平方米?
7.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.
(1)求甲、乙两人每天各加工多少个这种零件
(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲加工了多少天?
8.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
9.某加工厂甲、乙两人加工机器零件,已知甲每天加工的数量是乙每天加工数量的1.2倍,甲加工900个这种零件比乙加工500个这种零件多用10天.
(1)求甲、乙每天各加工多少个机器零件?
(2)甲、乙两人每天加工这种机器零件的加工费分别是160元和120元,现有1500个这种零件的加工任务,若工厂要求总加工费用不超过7500元,求乙至少加工多少天(取整数).
10.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
11. 在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.
12.某服装店老板到厂家选购、两种品牌的儿童服装,每套品牌服装进价比品牌服装每套进价多25元,若用2000元购进种服装的数量是用750元购进种服装数量的2倍.
(1)求品牌服装每套进价为多少元?
(2)若品牌服装每套售价为140元,品牌服装每套售价为105元,服装店老板决定,购进品牌服装的数量比购进品牌服装的数量的2倍还少10套,两种服装全部售出后,要使总的获利超过2000元,则最少购进品牌的服装多少套?
13.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100 000元,乙公司共捐款140 000元下,面是甲、乙两公司员工的一段对话:
我们公司的人数比
你们公司少30人
我们公司的人均捐款
数是你们公司的倍
甲公司员工 乙公司员工
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15 000
元,B种防疫物资每箱12 000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).
14.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
15.今年,“广汉三星堆”又有新的文物出土,景区游客大幅度增长.为了应对暑期旅游旺季,方便更多的游客在园区内休息,景区管理委员会决定向某公司采购一批户外休闲椅.经了解,该公司出售弧形椅和条形椅两种类型的休闲椅,已知条形椅的单价是弧形椅单价的0.75倍,用8000元购买弧形椅的数量比用4800元购买条形椅的数量多10张.
(1)弧形椅和条形椅的单价分别是多少元?
(2)已知一张弧形椅可坐5人,一张条形椅可坐3人,景区计划共购进300张休闲椅,并保证至少增加1200个座位.请问:应如何安排购买方案最节省费用?最低费用是多少元?
16.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贯2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
17.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.
(1)求一、二等奖奖品的单价;
(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?
18.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:
衬衫价格
甲
乙
进价(元件)
售价(元件)
260
180
若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.
(1)求甲、乙两种衬衫每件的进价;
(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;
(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠元出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?
19.某中学初三学生在开学前去商场购进A,B两款书包奖励班级表现优秀的学生,购买A款书包共花费6000元,购买B款书包共花费3200元,且购买A款书包数量是购买B款书包数量的3倍,已知购买一个B款书包比购买一个A款书包多花30元.
(1)求购买一个A款书包、一个B款书包各需多少元?
(2)为了调动学生的积极性,学校在开学后再次购进了A,B两款书包,每款书包不少于14个,总花费恰好为2268元,且在购买时商场对两款书包的销售单价进行了调整,A款书包销售单价比第一次购买时提高了8%,B款书包按第一次购买时销售单价的九折出售.求此次A款书包有几种购买方案?
(3)在(2)的条件下,商场这次销售两款书包,单价调整后利润比调整前减少72元,直接写出两款书包的购买方案.
20.某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.
(1)求两种品牌洗衣液的进价;
(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?
2022年中考数学二轮专题复习——分式方程的实际应用参考答案
1.在一次10km跑步锻炼中,先匀速跑了4km,之后提速20%并匀速跑完剩余路程,这样小致一共用了跑完全程,求小致前4km的速度是多少?
【答案】
设小亮前4km的速度为.
根据题意,得:
解得:.
经检验,是原方程的解,且符合题意.
答:小亮前4km的速度为.
2.为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?
【答案】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,
依题意得:=,
解得:x=7,
经检验,x=7是原方程的解,且符合题意.
答:每千克有机大米的售价为7元.
3.2020年为做好“精准扶贫”工作,某地第一次花费16000元购买了高原沃柑育苗若干株,为“加快产业扶贫,打赢脱贫攻坚战”,决定再次花费32000元购买同种高原沃柑育苗,第二次购买每株育苗价格比第一次每株育苗价格降低了20%,结果比第一次多买了960株,求第一次购买每株高原沃柑育苗多少元?
【答案】
解:设第一次购买每株高原沃柑育苗x元,则第二次购买每株高原沃柑育苗元,
依题意得:,
解得:,
经检验,是原方程的解,且符合题意.
答:第一次购买每株高原沃柑育苗25元.
4.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?
【答案】解:设该景点在设施改造后平均每天用水x吨,则在改造前平均每天用水2x吨,
根据题意,得﹣=5.
解得x=2.
经检验:x=2是原方程的解,且符合题意.
答:该景点在设施改造后平均每天用水2吨.
5.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等。
(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?
【答案】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,
根据题意得:,
解得:x=35,
经检验,x=35是原方程的解,
∴x﹣9=26.
答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.
(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,
根据题意得:26a+35(200﹣a)=6280,
解得:a=80.
答:购买了80条A型芯片.
6.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了,结果提前11天完成任务,求实际平均每天施工多少平方米?
【答案】首先设原计划平均每天施工x平方米,根据题意列出分式方程,解出分式方程,然后根据“实际工作效率比原计划每天提高了”得出答案.
解:设原计划平均每天施工x平方米,则
,解得x=500,
经检验,x=500是原分式方程的解,
∴实际平均每天施工为500×(1+20%)=600平方米.
答:实际平均每天施工为600平方米.
7.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.
(1)求甲、乙两人每天各加工多少个这种零件
(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲加工了多少天?
【答案】解:(1)设乙每天加工个零件,则甲每天加工个零件,由题意得:
化简得
解得
经检验,是分式方程的解且符合实际意义.
答:甲每天加工60个零件,乙每天加工,40个零件.
(2)设甲加工了天,乙加工了天,则由题意得
由①得③
将③代入②得
解得,
答:甲至少加工了40天.
8.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
【答案】解:(1)设当前参加生产的工人有x人,由题意可得:
,
解得:x=30,
经检验:x=30是原分式方程的解,且符合题意,
∴当前参加生产的工人有30人;
(2)每人每小时完成的数量为:16÷8÷40=0.05(万剂),
设还需要生产y天才能完成任务,由题意可得:
4×15+(30+10)×10×0.05y=760,
解得:y=35,
35+4=39(天),
9.某加工厂甲、乙两人加工机器零件,已知甲每天加工的数量是乙每天加工数量的1.2倍,甲加工900个这种零件比乙加工500个这种零件多用10天.
(1)求甲、乙每天各加工多少个机器零件?
(2)甲、乙两人每天加工这种机器零件的加工费分别是160元和120元,现有1500个这种零件的加工任务,若工厂要求总加工费用不超过7500元,求乙至少加工多少天(取整数).
【答案】
解:(1)设乙每天加工x个机器零件,则
,
解方程得
经检验,是原方程的解,这时
答:甲每天加工个机器零件,乙每天加工个机器零件
(2)设乙加工m天,则
≤,
解得m≥
∵m取整数,
∴m最小值为(或m≥)
答:乙至少加工天
10.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
【答案】(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,由“3600元购买排球的个数要比用3600元购买篮球的个数多10个”这个等量关系列出方程求解;(2)设文体商店计划购进篮球m个,总利润y元,根据题意用m表示y,结合m的取值范围和m为整数,即可得出获得最大利润的方案.
解:(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,依题意有
+10=,解得x=40,经检验,x=40是原方程的解,90%x=90%×40=36符合实际意义.
故每一个篮球的进价是40元,每一个排球的进价是36元;
(2)设文体商店计划购进篮球m个,总利润y元,则y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,
依题意有,解得0<m≤25且m为整数,∵6>0,∴y随m的增大而增大,
∴当m=25时,y最大,这时y=6×25+5400=5550,100﹣25=75(个).
答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.
11. 在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.
【答案】解:(1)设B原料单价为m元,则A原料单价为1.5m元,
根据题意,得﹣=100,
解得m=3,
∴1.5m=4.5,
∴每盒产品的成本是:4.5×2+4×3+9=30(元),
答:每盒产品的成本为30元;
(2)根据题意,得w=(x﹣30)[500﹣10(x﹣60)]=﹣10x2+1400x﹣33000,
∴w关于x的函数解析式为:w=﹣10x2+1400x﹣33000;
(3)由(2)知w=﹣10x2+1400x﹣33000=﹣10(x﹣70)2+16000,
∴当a≥70时,每天最大利润为16000元,
当60<a<70时,每天的最大利润为(﹣10a2+1400a﹣33000)元.
12.某服装店老板到厂家选购、两种品牌的儿童服装,每套品牌服装进价比品牌服装每套进价多25元,若用2000元购进种服装的数量是用750元购进种服装数量的2倍.
(1)求品牌服装每套进价为多少元?
(2)若品牌服装每套售价为140元,品牌服装每套售价为105元,服装店老板决定,购进品牌服装的数量比购进品牌服装的数量的2倍还少10套,两种服装全部售出后,要使总的获利超过2000元,则最少购进品牌的服装多少套?
【答案】
(1)设品牌服装每套进价为元,
,
解分式方程得:,
检验:当时,.
所以,是原分式方程的解.
答:每套品牌服装100元.
(2)设购进品牌的服装套,B品牌的进价:元,
,
解不等式得:,
∵为整数,
∴最小取24.
答:至少购进品牌的服装24套.
13.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100 000元,乙公司共捐款140 000元下,面是甲、乙两公司员工的一段对话:
我们公司的人数比
你们公司少30人
我们公司的人均捐款
数是你们公司的倍
甲公司员工 乙公司员工
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15 000
元,B种防疫物资每箱12 000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).
【答案】 (1) 人均捐款数=捐款总数 总人数.由题意假设乙公司有x人,则甲公司有(x- 30)人,再根据乙公司的人均捐款数是甲公司的倍列出一元一次方程,从而求出甲、乙两公司的人数.
(2) 假设购买A种防疫物资m箱,购买B种防疫物资n箱,根据题意列出一个二元一次方程,用含n的式子表示出m,并且根据n大于等于10,从而求出m与n的正整数值.
(1)设乙公司有x人,则甲公司有(x- 30)人,由题意得
,解得x=180.
经检验,x=180是原方程的解.
x- 30= 150.
答:甲公司有150人,乙公司有180人.
(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,由题意得
15000m+12000n = 100000 + 140000,整理得m=16-n.
又因为n≥10,且m,n为正整数,
所以。
答:有2种购买方案:购买8箱A种防疫物资、10箱B种防疫物资,或购买4箱A种防疫物资、15箱B种防疫物资.
14.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
【答案】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,
则,
解得:a=40,经检验a=40是方程的解,
∴猪肉每盒进价40元,豆沙粽每盒进价30元,
答:猪肉每盒进价40元,豆沙粽每盒进价30元;
(2)由题意得,当x=50时,,每天可售出100盒,
当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,
∴y=x[100﹣2(x﹣50)]﹣40x[100﹣2(x﹣50)]=﹣2x2+280x﹣8000,
配方,得:y=﹣2(x﹣70)2+1800,
∵x<70时,y随x的增大而增大,
∴当x=65时,y取最大值,最大值为:﹣2(65﹣70)2+1800=1750(元).
答:y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.
15.今年,“广汉三星堆”又有新的文物出土,景区游客大幅度增长.为了应对暑期旅游旺季,方便更多的游客在园区内休息,景区管理委员会决定向某公司采购一批户外休闲椅.经了解,该公司出售弧形椅和条形椅两种类型的休闲椅,已知条形椅的单价是弧形椅单价的0.75倍,用8000元购买弧形椅的数量比用4800元购买条形椅的数量多10张.
(1)弧形椅和条形椅的单价分别是多少元?
(2)已知一张弧形椅可坐5人,一张条形椅可坐3人,景区计划共购进300张休闲椅,并保证至少增加1200个座位.请问:应如何安排购买方案最节省费用?最低费用是多少元?
【答案】
解:(1)设弧形椅的单价为x元,则条形椅的单价为0.75x元,根据题意得:
,
解得x=160,
经检验,x=160是原方程的解,且符合题意,
∴0.75x=120,
答:弧形椅的单价为160元,条形椅的单价为120元;
(2)设购进弧形椅m张,则购进条形椅(300-m)张,由题意得:
5m+3(300-m)≥1200,
解得m≥150;
设购买休闲椅所需的费用为W元,
则W=160m+120(300-m),
即W=40m+36000,
∵40>0,
∴W随m的增大而增大,
∴当m=150时,W有最小值,W最小=40×150+36000=42000,
300-m=300-150=150;
答:购进150张弧形椅,150张条形椅最节省费用,最低费用是42000元.
16.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贯2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
【答案】
解:(1)设第一批饮料进货单价为x元,可列如下的表格:
单价
数量
总价
第一批
x
1600
第二批
x+2
6000
则 ,化简得,去分母得,解得x=8,经检验,是分式方程的解,且符合题意.
答:第一批饮料进货单价为8元 ;
(2)设销售单价为m元,则:,化简得:,解得:m≥11.
答:销售单价至少为11元.
17.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.
(1)求一、二等奖奖品的单价;
(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?
【答案】解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,
依题意得:+=25,
解得:x=15,
经检验,x=15是原方程的解,且符合题意,
∴4x=60,3x=45.
答:一等奖奖品单价为60元,二等奖奖品单价为45元.
(2)设购买一等奖奖品m件,二等奖奖品n件,
依题意得:60m+45n=1275,
∴n=.
∵m,n均为正整数,且4≤m≤10,
∴或或,
∴共有3种购买方案,
方案1:购买4件一等奖奖品,23件二等奖奖品;
方案2:购买7件一等奖奖品,19件二等奖奖品;
方案3:购买10件一等奖奖品,15件二等奖奖品.
18.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:
衬衫价格
甲
乙
进价(元件)
售价(元件)
260
180
若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.
(1)求甲、乙两种衬衫每件的进价;
(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;
(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠元出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?
【答案】
解:(1)依题意得:,
整理,得:,
解得:,
经检验,是原方程的根,
答:甲种衬衫每件进价100元,乙种衬衫每件进价90元;
(2)设购进甲种衬衫件,乙种衬衫件,
根据题意得:,
解得:,
为整数,,
答:共有11种进货方案;
(3)设总利润为,则
,
①当时,,随的增大而增大,
当时,最大,
此时应购进甲种衬衫110件,乙种衬衫190件;
②当时,,,
(2)中所有方案获利都一样;
③当时,,随的增大而减小,
当时,最大,
此时应购进甲种衬衫100件,乙种衬衫200件.
综上:当时,应购进甲种衬衫110件,乙种衬衫190件;当时,(2)中所有方案获利都一样;当时,购进甲种衬衫100件,乙种衬衫200件.
19.某中学初三学生在开学前去商场购进A,B两款书包奖励班级表现优秀的学生,购买A款书包共花费6000元,购买B款书包共花费3200元,且购买A款书包数量是购买B款书包数量的3倍,已知购买一个B款书包比购买一个A款书包多花30元.
(1)求购买一个A款书包、一个B款书包各需多少元?
(2)为了调动学生的积极性,学校在开学后再次购进了A,B两款书包,每款书包不少于14个,总花费恰好为2268元,且在购买时商场对两款书包的销售单价进行了调整,A款书包销售单价比第一次购买时提高了8%,B款书包按第一次购买时销售单价的九折出售.求此次A款书包有几种购买方案?
(3)在(2)的条件下,商场这次销售两款书包,单价调整后利润比调整前减少72元,直接写出两款书包的购买方案.
【答案】
解:(1)设购买一个A款书包需要x元,则购买一个B款书包需要元,
依题意得:,
解得:,
经检验,是原方程的解,且符合题意,
∴(元).
答:购买一个A款书包需要50元,购买一个B款书包需要80元;
(2)设购买m个B款书包,则购买个A款书包,
依题意得:,
解得:.
又∵为整数,
∴m为3的倍数,
∴m可以取15,18,21,
∴此次A款书包有3种购买方案;
(3)依题意得:,
解得:m=18,
∴(个).
答:购买18个A款书包,18个B款书包.
20.某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.
(1)求两种品牌洗衣液的进价;
(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?
【答案】
解:(1)设甲品牌洗衣液进价为元/瓶,则乙品牌洗衣液进价为元/瓶,
由题意可得,,
解得,
经检验是原方程的解.
答:甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶.
(2)设利润为元,购进甲品牌洗衣液瓶,
则购进乙品牌洗衣液瓶,
由题意可得,,
解得,
由题意可得,,
∵,∴随的增大而增大,
∴当时,取最大值,.
答:购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元.
相关试卷
这是一份2023年数学中考冲刺二轮复习专题实际应用题,共9页。
这是一份中考数学专题复习 专题10 分式方程及其应用,文件包含中考数学专题复习专题10分式方程及其应用教师版含解析docx、中考数学专题复习专题10分式方程及其应用学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习六(含答案),共7页。试卷主要包含了2 m,宽2,)),4时,y=-eq \f×2,4x﹣1﹣0等内容,欢迎下载使用。