所属成套资源:2022年中考数学高频考点专题突破
考点17 统计-2022年中考数学高频考点专题突破(全国通用)(解析版)
展开
这是一份考点17 统计-2022年中考数学高频考点专题突破(全国通用)(解析版),共48页。试卷主要包含了全面调查,调查的选取,抽样调查样本的选取,频数分布直方图等内容,欢迎下载使用。
考点17. 统计
知识框架:
基础知识点:
知识点1-1全面调查与抽样调查
1.全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.
抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.
2.调查的选取:当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.
3.抽样调查样本的选取:1)抽样调查的样本要有代表性;2)抽样调查的样本数目要足够大.
知识点1-2 总体、个体、样本及样本容量
总体:所要考察对象的全体叫做总体. 个体:总体中的每一个考察对象叫做个体.
样本:从总体中抽取的部分个体叫做样本.样本容量:样本中个体的数目叫做样本容量.
知识点1-3 几种常见的统计图表
1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.
特点:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.
2.折线统计图:用几条线段连成的折线来表示数据的图形.
特点:易于显示数据的变化趋势.
3.扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.
百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.
扇形的圆心角=360°×百分比.
4.频数分布直方图
1)每个对象出现的次数叫频数.2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.
3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.
4)频数分布直方图的绘制步骤:①计算最大值与最小值的差;②决定组距与组数;③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分布表;⑤画频数分布直方图:用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.
知识点1-4 数据分析
1.平均数
1)平均数:一般地,如果有n个数,,…,,那么,叫做这n个数的平均数,读作“x拔”.
2)加权平均数:如果n个数中,出现f1次,x2出现f2次,…,xk出现fk次(这里),那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中f1,f2,…,fk叫做权.
2.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.
3.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
4. 方差:在一组数据,,…,中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.通常用“”表示,即.
重难点题型
题型1全面调查与抽样调查
【解题技巧】1.全面调查的适用范围:调查的范围小,调查不具有破坏性,数据要求准确、全面.
2.抽样调查的适用范围:当所调查对象涉及面大、范围广,或受条件限制,或具有破坏性等.
1.(2020·山东日照市·中考真题)下列调查中,适宜采用全面调查的是( )
A.调查全国初中学生视力情况 B.了解某班同学“三级跳远”的成绩情况
C.调查某品牌汽车的抗撞击情况 D.调查2019年央视“主持人大赛”节目的收视率
【答案】B
【分析】根据全面调查和抽样调查的适用条件即可求解.
【详解】解:对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,
A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,
B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,
C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,
D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,故选:B.
【点睛】本题考查全面调查和抽样调查的适用条件,解题关键是要知道这个适用条件.
2.(2020·广西中考真题)下列调查中,最适宜采用全面调查(普查)的是( )
A.调查一批灯泡的使用寿命 B.调查漓江流域水质情况
C.调查桂林电视台某栏目的收视率 D.调查全班同学的身高
【答案】D
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.从而逐一判断各选项.
【详解】解:A、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意;
B、调查漓江流域水质情况,所费人力、物力和时间较多,应当采用抽样调查的方式,故本选项不合题意;
C、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意.
D、调查全班同学的身高,应当采用全面调查,故本选项符合题意.故选:D.
【点睛】本题考查的是全面调查与抽样调查的含义,掌握以上知识是解题的关键.
3.(2020·广西中考真题)以下调查中,最适合采用全面调查的是( )
A.检测长征运载火箭的零部件质量情况 B.了解全国中小学生课外阅读情况
C.调查某批次汽车的抗撞击能力 D.检测某城市的空气质量
【答案】A
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据;
B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;
C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查;
D.检测某城市的空气质量,不可能全面调查,用抽样调查.
【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4.(2020·河南中考真题)要调查下列问题,适合采用全面调查(普查)的是( )
A.中央电视台《开学第--课》 的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.某品牌新能源汽车的最大续航里程
【答案】C
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】A、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;
B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;
C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;
D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.
【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5.(2020·湖南张家界市·中考真题)下列采用的调查方式中,不合适的是( )
A.了解澧水河的水质,采用抽样调查. B.了解一批灯泡的使用寿命,采用全面调查.
C.了解张家界市中学生睡眠时间,采用抽样调查. D.了解某班同学的数学成绩,采用全面调查.
【答案】B
【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.
【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,
了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,
了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,
了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.
【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6.(2020·江苏扬州市·中考真题)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:
调查问卷 ________年________月________日
你平时最喜欢的一种体育运动项目是( )(单选)
A. B. C. D.其他运动项目
准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
【答案】C
【分析】在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中找到三个互不包含,互不交叉的项目即可.
【详解】解:∵①室外体育运动,包含了②篮球和③足球,⑤球类运动,包含了②篮球和③足球,
∴只有选择②③④,调查问卷的选项之间才没有交叉重合,故选:C.
【点睛】本题考查收集调查数据的过程与方法,理解题意,准确掌握收集数据的方法是解题的关键.
7.(2020·贵州贵阳市·中考真题)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )
A.直接观察 B.实验 C.调查 D.测量
【答案】C
【分析】根据得到数据的活动特点进行判断即可.
【详解】解:因为获取60岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.故选:C.
【点睛】本题考查了数据的获得方式,解题的关键是要明确,调查要进行数据的收集和整理.
题型2 总体、个体、样本及样本容量
【解题技巧】1).在理解总体、个体和样本时,一定要注意总体、个体、样本中的“考察对象”是一种“数量指标”(如身高、体重、使用寿命等),是指我们所要考察的具体对象的属性,三者之间应对应一致.2).样本容量指的是样本中个体的数目,它只是一个数字,不带单位.
1.(2020·四川内江市·中考模拟)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是( )
A.这1000名考生是总体的一个样本 B.近4万名考生是总体
C.每位考生的数学成绩是个体 D.1000名学生是样本容量
【答案】C
【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.
【详解】解:A、1000名考生的数学成绩是样本,故本选项错误;
B、4万名考生的数学成绩是总体,故本选项错误;C、每位考生的数学成绩是个体,故本选项正确;
D、1000是样本容量,故本选项错误.故选C.
2.(2020·江苏泰州市·中考模拟)为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是
A.某市八年级学生的肺活量 B.从中抽取的500名学生的肺活量
C.从中抽取的500名学生 D.500
【答案】B
【详解】∵了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,
这项调查中的样本是500名学生的肺活量,故选B
3.(2020·四川广安市·中考模拟)为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是( )
A.32000名学生是总体 B.1600名学生的体重是总体的一个样本
C.每名学生是总体的一个个体 D.以上调查是普查
【答案】B
【解析】A、总体是:某市参加中考的32000名学生的体质情况,故本选项错误,
B、样本是:1600名学生的体重,故本选项正确,C、每名学生的体重是总体的一个个体,故本选项错误,
D、是抽样调查,故本选项错误,故选B.
考点:1.总体、个体、样本、样本容量;2.全面调查与抽样调查.
4.(2020·四川内江市·中考模拟)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )
A.400 B.被抽取的400名考生
C.被抽取的400名考生的中考数学成绩 D.内江市2018年中考数学成绩
【答案】C
【解析】分析:直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而进行分析得出答案.
详解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.
故选:C.
点睛:此题主要考查了样本的定义,正确把握定义是解题的关键.
5.(2020·山东聊城市·中考模拟)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是 ( )
A.2400名学生 B.100名学生
C.所抽取的100名学生对“民族英雄范筑先”的知晓情况 D.每一名学生对“民族英雄范筑先”的知晓情况
【答案】C
【解析】首先根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况.然后判断出这次调查的总体是:2400名学生对“民族英雄范筑先”的知晓情况.故选C
考点:总体、个体、样本、样本容量
6.(2020·四川攀枝花市·中考模拟)2020年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )
A.1.6万名考生 B.2000名考生 C.1.6万名考生的数学成绩 D.2000名考生的数学成绩
【答案】D
【解析】2020年我市有近1.6万名考生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,在这个问题中抽取的2000名考生的数学成绩为样本.故选D.
考点:总体、个体、样本、样本容量.
7.(2020·云南昆明市·中考模拟)为了了解2020年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是( )
A.2013年昆明市九年级学生是总体 B.每一名九年级学生是个体
C.1000名九年级学生是总体的一个样本 D.样本容量是1000
【答案】D
【解析】根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可:
A、2013年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;
B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;
C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;
D、样本容量是1000,该说法正确,故本选项正确.故选D.
8.(2020·广西河池市·中考模拟)2019年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )
A.300名考生的数学成绩 B.300
C.3.2万名考生的数学成绩 D.300名考生
【答案】A
【分析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本.
【详解】解:了解2013年河池市初中毕业升学考试中考生的数学成绩分布情况,从中抽取300名考生的中考数学成绩进行统计分析,样本是,被抽取的300名考生的数学成绩.故选A.
题型3样本估计总体
【解题技巧】
1.(2020·四川乐山市·中考真题)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、 “优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )
A. B. C. D.
【答案】A
【分析】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.
【详解】解:“良”和“优”的人数所占的百分比:×100%=55%,
∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),故选:A.
【点睛】本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.
2.(2020·上海中考真题)为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为____.
【答案】3150名.
【分析】用样本中会游泳的学生人数所占的比例乘总人数即可得出答案.
【详解】解:由题意可知,150名学生占总人数的百分比为:,
∴估计该区会游泳的六年级学生人数约为8400×=3150(名) .故答案为:3150名.
【点睛】本题主要考查样本估计总体,熟练掌握样本估计总体的思想及计算方法是解题的关键.
3.(2020·湖南中考真题)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:
阅读时间(x小时)
x≤3.5
3.5<x≤5
5<x≤6.5
x>6.5
人数
12
8
6
4
若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_____.
【答案】400
【分析】用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.
【详解】解:1200×=400(人),
答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.故答案为:400.
【点睛】本题主要考查了用样本所占百分比估算总体的数量的知识.正确的理解题意是解题的关键.
4.(2020·江苏苏州市·中考真题)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:
方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;
方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;
方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.
其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”)
(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):
样本容量
平均分
及格率
优秀率
最高分
最低分
100
93.5
100
80
分数段统计(学生成绩记为)
分数段
频数
0
5
25
30
40
请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;
②估计该校1200名学生中达到“优秀”的学生总人数.
【答案】(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人
【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段;②用优秀率乘以该校共有的学生数,即可求出答案.
【详解】解:(1)要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.答案是:方案三;
(2)①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数,
∴这次竞赛成绩的中位数落在落在分数段内;
∴该校1200名学生竞赛成绩的中位数落在分数段内;
②由题意得:(人).∴该校1200名学生中达到“优秀”的学生总人数为840人.
【点睛】解决此题,需要能从统计表中获取必要的信息,根据题意列出算式是本题的关键,用到的知识点是抽样的可靠性,中位数的定义,用样本估计总体等.
5.(2020·内蒙古赤峰市·中考真题)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:
某校60名学生体育测试成绩频数分布表
成绩
划记
频数
百分比
优秀
a
30%
良好
30
b
合格
9
15%
不合格
3
5%
合计
60
60
100%
如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为__________人.
【答案】240
【分析】根据表中的已知信息,分别补全a、b的值,并计算出样本中身体素质良好及以上的人数所占百分比为80%,故七年级全体学生体素质良好及以上的人数=总人数80%.
【详解】解:根据已知样本人数60人,可得成绩优秀的人数为60-30-9-3=18人,且良好人数对应的百分比应为b=,样本中身体素质良好及以上的人数所占百分比为30%+50%=80%,
七年级共有300名学生,故其身体素质良好及以上的人数为(人),故答案为:240.
【点睛】本题主要考察了用样本的频数估计总体的频数,解题的关键在于根据已知条件补充完整频数分布表,根据样本中身体素质良好及以上的频数推测七年级全体学生身体素质良好及以上的频数.
6.(2020·湖南永州市·中考真题)永州市教育部门为了了解全市中小学安全教育情况,对某校进行了“防溺水”安全知识的测试.从七年级随机抽取了50名学生的测试成绩(百分制),整理样本数据,得到下表:
根据抽样调查结果,估计该校七年级600名学生中,80分(含80分)以上的学生有_________人.
【答案】480
【分析】用七年级的学生总数乘以样本中80分以上的比例即可得到答案.
【详解】(人)故答案为:480.
【点睛】此题考查用样本的比例估计总体的比例,由此求出对应的总体中的人数,正确理解用样本估计总体的方法是解题的关键.
7.(2020·湖南郴州市·中考真题)质检部门从件电子元件中随机抽取件进行检测,其中有件是次品.试据此估计这批电子元件中大约有__________件次品.
【答案】20
【分析】先求出次品所占的百分比,再根据生产这种零件1000件,直接相乘得出答案即可.
【详解】∵随机抽取100件进行检测,检测出次品2件,∴次品所占的百分比是:,
∴这一批次产品中的次品件数是::(件),故答案为:20.
【点睛】本题主要考查了用样本估计总体,根据出现次品的数量求出次品所占的百分比是解题关键.
8.(2020·柳州市柳林中学中考真题)为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的( )
A.14% B.16% C.20% D.50%
【答案】D
【分析】根据条形统计图中的数据,可以计算出一天锻炼时间为1小时的人数占全班人数的百分比,从而可以解答本题.
【详解】解:由题意可得,25÷(8+25+10+7)×100%=0.5×100%=50%,
即一天锻炼时间为1小时的人数占全班人数的50%,故选:D.
【点睛】本题考查样本估计总体,从条形统计图中读取信息是解题的关键.
题型4三种常见的统计图
【解题技巧】1).条形统计图中每个小长方形的高即为该组对象数据的个数(频数),各小长方形的高之比等于相应的个数(频数)之比.
2).扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.
3).在利用折线统计图比较两个统计量的变化趋势时,要保证两个图中横、纵坐标的一致性,即坐标轴上同一单位长度所表示的意义应该一致.
1.(2020·上海中考真题)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )
A.条形图 B.扇形图 C.折线图 D.频数分布直方图
【答案】B
【分析】根据统计图的特点判定即可.
【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.
【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能反映各个部分占总体的百分比,折线统计图能反映样本或总体的趋势,频数分布直方图能反映样本或总体的分布情况,熟练掌握各统计图的特点是解题的关键.
2.(2020·四川达州市·中考真题)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:
①绘制扇形统计图
②收集三个部分本班学生喜欢的人数
③计算扇形统计图中三个部分所占的百分比
其中正确的统计顺序是____________.
【答案】②③①
【分析】制作扇形统计图的一般步骤是:1、计算各部分在总体中所占的百分比;2、计算各个扇形的圆心角的度数;3、在圆中依次作出上面的扇形,并标出百分比;据此解答即可.
【详解】解:正确的统计顺序是:②收集三个部分本班学生喜欢的人数;③计算扇形统计图中三个部分所占的百分比;①绘制扇形统计图;故答案为:②③①.
【点睛】本题考查了扇形统计图的相关知识,解题的关键明确制作扇形统计图的一般步骤.
3.(2020·湖北孝感市·中考真题)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长分钟;B类:5分钟总时长分钟;C类:10分钟总时长分钟;D类:总时长15分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.
该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.
【答案】336
【分析】先根据A类的条形统计图和扇形统计图信息求出调查抽取的总人数,再求出每天做眼保健操总时长超过5分钟且不超过10分钟的学生的占比,然后乘以1200即可得.
【详解】调查抽取的总人数为(人) C类学生的占比为
B类学生的占比为 则(人)
即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人故答案为:336.
【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,掌握理解统计调查的相关知识是解题关键.
4.(2020·山东威海市·)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是( )
A.本次调查的样本容量是 B.选“责任”的有人
C.扇形统计图中“生命”所对应的扇形圆心角度数为 D.选“感恩”的人数最多
【答案】C
【分析】根据条形统计图与扇形统计图中的相关数据进行计算并逐一判断即可得解.
【详解】A.由统计图可知“奉献”对应的人数是108人,所占比为18%,则调查的样本容量是,故A选项正确;
B.根据扇形统计图可知“责任”所对的圆心角是,则所对人数为人,故B选项正确;
C.根据条形统计图可知“生命”所对的人数为132人,则所对的圆心角是,故C选项错误;
D.根据“敬畏”占比为16%,则对应人数为人,则“感恩”的人数为人,人数最多,故D选项正确,故选:C.
【点睛】本题主要考查了通过条形统计图与扇形统计图之间各部分数量与占比的关系对总体,未知部分对应数量以及对应圆心角的求解,数量掌握相关计算方法是解决本题的关键.
5.(2020·广东广州市·中考真题)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )
A.套餐一 B.套餐二 C.套餐三 D.套餐四
【答案】A
【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.
【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:.
【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.
6.(2020·浙江嘉兴市·中考真题)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:
根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是 品牌,月平均销售量最稳定的是 品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?
(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.
【答案】(1)B, C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析
【分析】(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;
(3)从市场占有率、平均销售量等方面提出建议.
【详解】(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;
由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;
故答案为:B,C;
(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);
答:2019年其他品牌的电视机年销售总量是115.2万台;
(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;
建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.
【点睛】本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键.
7.(2020·广西贵港市·中考真题)某校对九年级学生进行“综合素质”评价,评价的结果分为(优秀)、(良好)、(合格)、(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:
(1)(良好)等级人数所占百分比是______________________;
(2)在扇形统计图中,(合格)等级所在扇形的圆心角度数是___________________;
(3)请补充完整条形统计图;
(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为(优秀)等级或(良好)等级的学生共有多少名?
【答案】(1)25%;(2)72°;(3)见解析;(4)700名
【分析】(1)扇形统计图中D占10%,结合条形统计图中D有4人,先计算总人数,再求得B的人数,即可解题;(2)计算C等级的人数,再求得C的比例,最后计算其圆心角度数即可;(3)根据(1)中总人数,解得B的人数,作图见解析;(4)计算样本A与B的总人数比例,再估算总体即可
【详解】解:(1) 故答案为:25%;
(2)故答案为:72°;
(3)如图所示:
(4)由题意得:(名),答:评价结果为等级或等级的学生共有700名.
【点睛】本题考查扇形统计图、条形统计图、用样本估算总体等知识,是重要考点,难度较易,掌握相关知识是解题关键.
8.(2020·吉林长春市·中考真题)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气.下图是长春市从2014年到2019年的空气质量级别天数的统计图表.
2014—-2019年长春市空气质量级别天数统计表:
空气质量级别
天数
年份
优
良
轻度污染
中度污染
重度污染
严重污染
2014
30
215
73
28
13
6
2015
43
193
87
19
15
8
2016
51
237
58
15
5
0
2017
65
211
62
16
9
2
2018
123
202
39
0
1
0
2019
126
180
38
16
5
0
2014-2019年长春市空气质量为“达标”和“优”的天数折线统计图:
根据上面的统计图表回答下列问题:
(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是_________年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为__________天,平均数为________天.
(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是_________年,这一年空气质量为“优”的天数的年增长率约为___________(精确到).(空气质量为“优”=[(今年空气质量为优的天数-去年空气质量为优的天数)÷去年空气质量为优的天数]×100%
(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.
【答案】(1)2018;(2)7,8;(3)2018,;(4)2018年空气质量好,2018年达标天气天数最多
【分析】(1)根据折线统计图中各年的“达标”天数比较即可得到答案;(2)根据统计表解答;
(3)依次计算每年的空气质量为“优”增加的天数即可得到答案,利用公式计算增长率;
(4)根据统计中空气质量为“达标”的天数最多的年份解答.
【详解】(1)从2014年到2019年空气质量为“达标”的天数分别为:245、236、288、276、325、306,
故答案为:2018;
(2)从2014年到2019年空气质量为“重度污染”的天数由小到大重新排列为:1、5、5、9、13、15,所以中位数为,平均数为,故答案为:7、8;
(3)从2015年到2019年,和前一年相比,空气质量为“优”的天数依次增加的天数为:
43-30=13,51-43=8,65-51=14,123-65=58,126-123=3,故增加天数最多的是2018年,
这一年空气质量为“优”的天数的年增长率约为,故答案为:2018,;
(4)2018年空气质量好,2018年达标天气天数最多.
【点睛】此题考查了统计知识,正确理解统计表的意义,从统计表中得到必要的信息是解决问题的关键.
题型5 直方图
【解题技巧】分组要遵循三个原则:不空,即该组必须有数据;不重,即一个数据只能在一个组;不漏,即不能漏掉某一个数据.
1.(2020·江苏泰州市·中考真题)今年月日是第个全国爱眼日,某校从八年级随机抽取名学生进行了视力调查,并根据视力值绘制成统计图(如图),这名学生视力的中位数所在范围是______.
【答案】4.65-4.95.
【分析】根据频率直方图的数据和中位数概念可知,在这50个数据的中位数位于第四组,据此求解即可.
【详解】解:由中位数概念知道这个数据位于中间位置,共50个数据,根据频率直方图的数据可知,中位数位于第四组,即这名学生视力的中位数所在范围是4.65-4.95.故答案为:4.65-4.95.
【点睛】本题考查学生对频率直方图的认识和应用,以及对中位数的理解,熟悉相关性质是解题的关键.
2.(2020·内蒙古中考真题)我国技术发展迅速,全球领先.某公司最新推出一款产品,为了解用户对该产品的满意度,随机调查了30个用户,得到用户对该产品的满意度评分如下(单位:分):
83 92 68 55 77 71 73 62 73 95 92 94 72 64 59
66 71 75 69 86 87 79 81 77 68 82 62 77 61 88
整理上面的数据得到尚不完整的频数直方图(如图).请根据所给信息,解答下列问题:
(1)补全频数直方图;(2)参与调查的一个用户说:“我的满意度评分在这30个用户中是中位数”,该用户的满意度评分是_____分;(3)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分
低于60分
60分到89分
不低于90分
满意度等级
不满意
满意
非常满意
估计使用该公司这款产品的1500个用户中,满意度等级为“非常满意”的人数.
【答案】(1)见详解;(2)74;(3)200人
【分析】(1)由题意,求出满意度在90~100之间的频数,补全条形图即可;
(2)把数据从小到大排列,找出第15、16和数,即可求出中位数;
(3)求出非常满意的百分比,然后乘以1500即可得到答案;
【详解】(1)根据题意,满意度在70~80之间的有:77、71、73、73、72、71、75、79、77、77,共10个;
满意度在90~100之间的有:92、95、92、94,共4个;补全条形图,如下:
(2)把数据从小到大进行重新排列,则
第15个数为:73,第16个数为:75,∴中位数为:;故答案为:74.
(3)根据题意,,∴在1500个用户中满意度等级为“非常满意”的人数大约为200人.
【点睛】本题考查了直方图,频数分布直方表,用样本估计总体,中位数等知识,解题的关键是熟练掌握所学的知识,正确对题意进行分析解答.
3.(2020·海南中考真题)新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长(单位:小时)的情况,在全市范围内随机抽取了名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.
根据图中信息,解答下列问题:
(1)在这次调查活动中,采取的调查方式是_ (填写“全面调查”或“抽样调查”),_ .
(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“”范围的概率是 ;
(3)若该市有名初中生,请你估计该市每日线上学习时长在“”范围的初中生有_ 名.
【答案】(1)抽样调查; (2) ;(3)1200
【分析】(1)先根据全面调查和抽样调查的定义进行判断,再根据1≤t
相关试卷
这是一份考点16 视图投影、图形变换、尺规作图-2022年中考数学高频考点专题突破(全国通用)(解析版),共55页。试卷主要包含了投影,平行投影、中心投影、正投影,视图,三视图,三视图的画法,故答案为等内容,欢迎下载使用。
这是一份考点17 统计-2022年中考数学高频考点专题突破(全国通用)(原卷版),共19页。试卷主要包含了全面调查,调查的选取,抽样调查样本的选取,频数分布直方图等内容,欢迎下载使用。
这是一份考点18 概率-2022年中考数学高频考点专题突破(全国通用)(解析版),共53页。试卷主要包含了必然事件,不可能事件,随机事件等内容,欢迎下载使用。