年终活动
搜索
    上传资料 赚现金
    英语朗读宝
    8.2.4三角恒等变换的应用课件PPT第1页
    8.2.4三角恒等变换的应用课件PPT第2页
    8.2.4三角恒等变换的应用课件PPT第3页
    8.2.4三角恒等变换的应用课件PPT第4页
    8.2.4三角恒等变换的应用课件PPT第5页
    8.2.4三角恒等变换的应用课件PPT第6页
    8.2.4三角恒等变换的应用课件PPT第7页
    8.2.4三角恒等变换的应用课件PPT第8页
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用课文配套ppt课件

    展开

    这是一份人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用课文配套ppt课件,共60页。PPT课件主要包含了辅助角公式,解析1等内容,欢迎下载使用。
    知识梳理1.半角公式:
    (1)半角公式是由以前学习过的哪些公式推导来的?如何推导的?提示:倍角的余弦公式.推导如下:在倍角公式cs 2α=1-2sin2α=2cs2α-1中,以α代替2α,以 代替α,即得:cs α=1-2sin2 =2cs2 -1.所以sin2 = ,cs2 = ,tan2 = .开方可得半角公式.
    (2)半角公式中的正负号能否去掉?该如何选择?提示:不能.①若没有给出决定符号的条件,则在根号前保留正负两个符号;②若给出α的具体范围(即某一区间)时,则先求 所在范围,然后根据 所在范围选用符号.
    (3)半角公式对α∈R都成立吗?提示:公式 对α∈R都成立,但公式 要求α≠(2k+1)π(k∈Z).
    【思考】2.积化和差、和差化积公式(1)积化和差公式sin αcs β= [sin(α+β)+sin(α-β)],cs αsin β= [sin(α+β)-sin(α-β)],cs αcs β= [cs(α+β)+cs(α-β)],sin αsin β=- [cs(α+β)-cs(α-β)].
    【思考】(2)和差化积公式
    【思考】 (1)积化和差公式是由什么公式推导出来的?提示:两角和与差的正弦、余弦公式.(2)和差化积公式是如何推导出来的?提示:如果令x=α+β,y=α-β ,则α= ,β= ,从而可以由积化和差公式得到和差化积公式.
    【基础小测】1.辨析记忆(对的打“√”,错的打“×”)(1)cs (  )(2)存在α∈R,使得 (  )(3)对于任意α∈R,sin = sin α都不成立.(  )(4)若α是第一象限角,则 (  )(5)sin xsin y= [cs(x-y)-cs(x+y)].(  )
    提示:(1)×.只有当- +2kπ≤ ≤ +2kπ(k∈Z),即-π+4kπ≤α≤π+4kπ(k∈Z)时,cs = (2)√.当cs α=- +1时,上式成立,但一般情况下不成立.(3)×.当α=2kπ(k∈Z)时,上式成立,但一般情况下不成立.(4)√.若α是第一象限角,则 是第一、三象限角,此时tan = 成立.(5)√.积化和差公式.
    2. cs πcs π=(  ) A. B. C. D. 【解析】选B.由 3. 的值是    . 【解析】原式= 答案:-
    类型一 利用半角公式求值(数学运算)【题组训练】 角度1 给角求值 【典例】求值:(1)sin =    . (2)tan =    .  【思路导引】利用半角公式求解.
    【解析】(1) (2) 答案:(1)   (2)
     角度2 给值求值 【典例】若sin(π-α)=- 且α∈ ,则sin 等于(  )A.- B.- C. D. 【思路导引】利用诱导公式与半角公式求解.【解析】选B.由题意知sin α=- ,α∈ ,所以cs α=- .因为 ∈ ,所以
    【变式探究】本例条件不变求sin ,tan 的值.【解析】由题意知sin α=- ,α∈ ,所以cs α=- .因为 所以
    【解题策略】 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.
    (3)选公式:涉及半角公式的正切值时,常用 其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用 计算.(4)下结论:结合(2)求值.
    【题组训练】1.已知 =(  )A.- B. C. D.- 【解析】选B.因为cs =2cs2 -1=- ,所以cs =± ,又因为0

    相关课件

    高中数学人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用授课ppt课件:

    这是一份高中数学人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用授课ppt课件,文件包含人教B版高中数学必修三8.24三角恒等变换的应用课件pptx、人教B版高中数学必修三8.24三角恒等变换的应用同步练习含答案docx等2份课件配套教学资源,其中PPT共52页, 欢迎下载使用。

    高中数学人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用说课ppt课件:

    这是一份高中数学人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用说课ppt课件,共38页。PPT课件主要包含了新知初探·自主学习,课堂探究·素养提升,答案C,答案D,答案BC,答案B等内容,欢迎下载使用。

    高中数学人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用一等奖ppt课件:

    这是一份高中数学人教B版 (2019)必修 第三册8.2.4 三角恒等变换的应用一等奖ppt课件,共55页。PPT课件主要包含了学习目标,半角公式及其推导,名师点拨,积化和差公式,归纳总结,和差化积公式,万能公式及其推导,常考题型,非条件恒等式,条件恒等式等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map