![北师大版八年级数学下册 6.3 三角形中的角平分线PPT(课件)01](http://img-preview.51jiaoxi.com/2/3/12886156/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![北师大版八年级数学下册 6.3 三角形中的角平分线PPT(课件)02](http://img-preview.51jiaoxi.com/2/3/12886156/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![北师大版八年级数学下册 6.3 三角形中的角平分线PPT(课件)03](http://img-preview.51jiaoxi.com/2/3/12886156/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![北师大版八年级数学下册 6.3 三角形中的角平分线PPT(课件)04](http://img-preview.51jiaoxi.com/2/3/12886156/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![北师大版八年级数学下册 6.3 三角形中的角平分线PPT(课件)05](http://img-preview.51jiaoxi.com/2/3/12886156/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
初中数学北师大版八年级下册第一章 三角形的证明4 角平分线示范课课件ppt
展开通过对角的平分线性质定理和判定定理的理解,能运用定理推导出三角形中三条角平分线的性质.2. 通过例3的学习,能熟练运用角平分线的性质定理及判定定理进行数学的证明与计算; 3.通过小组成员的合作交流学习,4/5的学生能够运用角平分线的性质定理及判定定理,灵活解决实际问题.
一 提出问题 引入新课
问题1 你能准确的说出角平分线的性质定理与判定定理吗?
角平分线上的点到这个角的两边的距离相等.
在一个角的内部,到角的两边距离相等的点在这个角的平分线上.
问题2 请同学们准确做出一个三角形的三个内角的角平分线,你发现了什么结论?
三角形的三个角平分线相交于一点,并且这一点到三条边的距离相等.
二 解决问题 探究新知
例2 三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.
已知:如图,设△ABC的角平分线.BM、CN相交于点P,证明:P点在∠BAC的角平分线上.
二 解决问题 探究新知
证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE(角平分线上的点到这个角的两边的距离相等).同理:PE=PF.∴PD=PF.∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).∴△ABC的三条角平分线相交于点P且到三边的距离相等.
问题3 思考三角形三边的垂直平分线的交点与三条角平分线的交点有什么不同?
四 典例解析 熟练应用
五 思维拓展 拔高提升
如图,三条公路两两相交,现计划修建一个油库.(1)如果要求油库到两条公路AB、AC的距离相等,那么如何选择油库的位置?(2)如果要求油库到这三条公路的距离都相等,那么如何选择油库的位置?
课堂小结, 畅谈收获:
利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.2.明白三角形三边垂直平分线与三个内角角平分线的区别.3.学会了综合运用我们前面学过的角平分线性质定理与判定定理解决几何中的计算和证明问题.
初中数学北师大版八年级下册4 角平分线备课课件ppt: 这是一份初中数学北师大版八年级下册4 角平分线备课课件ppt,共16页。PPT课件主要包含了回顾与思考,探究新知,练一练,挑战自我,拓展延伸等内容,欢迎下载使用。
数学八年级下册3 三角形的中位线优秀课件ppt: 这是一份数学八年级下册3 三角形的中位线优秀课件ppt,文件包含北师大版数学八年级下册63三角形的中位线课件PPTppt、北师大版数学八年级下册63三角形的中位线教案doc等2份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
北师大版八年级下册3 三角形的中位线评优课课件ppt: 这是一份北师大版八年级下册3 三角形的中位线评优课课件ppt,共15页。PPT课件主要包含了学习目标,课堂学习,课堂小结,当堂检测等内容,欢迎下载使用。