华师大版八年级下册3. 一次函数的性质教学设计
展开一次函数的性质
知识技能目标
1.掌握一次函数y=kx+b(k≠0)的性质.
2.能根据k与b的值说出函数的有关性质.
过程性目标
1.经历探索一次函数图象性质的过程,感受一次函数中k与b的值对函数性质的影响;
2.观察图象,体会一次函数k、b的取值和直线位置的关系,提高学生数形结合能力.
情感目标
引导学生开动脑筋进行学习,使学生主动的探求新知,激发学生的好奇心和探索新知的兴趣。
教学重点
一次函数的性质及其应用。
教学难点
用一次函数的性质解决实际问题
教学过程
一、创设情境
1.一次函数的图象是一条直线,一般情况下我们画一次函数的图象,取哪两个点比较简便?
2.在同一直角坐标系中,画出函数和y=3x-2的图象.
问 在你所画的一次函数图象中,直线经过几个象限.
二、探究归纳
1.在所画的一次函数图象中,直线经过了三个象限.
2.观察图象发现在直线上,当一个点在直线上从左向右移动时,(即自变量x从小到大时),点的位置也在逐步从低到高变化(函数y的值也从小变到大).
即:函数值y随自变量x的增大而增大.
请同学们讨论:函数y=3x-2是否也有这种现象?
既然,一次函数的图象经过三个象限,观察上述两个函数的图象,从它经过的象限看,它必经过哪两个象限(可以再画几条直线分析)?
发现上述两条直线都经过一、三象限.又由于直线与y轴的交点坐标是(0,b)所以,当b>0时,直线与x轴的交点在y轴的正半轴,也称在x轴的上方;当b<0时,直线与x轴的交点在y轴的负半轴,也称在x轴的下方.所以当k>0,b≠0时,直线经过一、三、二象限或一、三、四象限.
3.在同一坐标系中,画出函数y=-x+2和的图象(图略).
根据上面分析的过程,请同学们研究这两个函数图象是否也有相应的性质?你能发现什么规律.
观察函数y=-x+2和的图象发现:当一个点在直线上从左向右移动时(即自变量x从小到大时),点的位置逐步从高到低变化(函数y的值也从大变到小).
即:函数值y随自变量x的增大而减小.
又发现上述两条直线都经过二、四象限,且当b>0时,直线与x轴的交点在y轴的正半轴,或在x轴的上方;当b<0时,直线与x轴的交点在y轴的负半轴,或在x轴的下方.所以当k<0,b≠0时,直线经过二、四、一象限或经过二、四、三象限.
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;
(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.
特别地,当b=0时,正比例函数也有上述性质.
当b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于正半轴.
下面,我们把一次函数中k与b的正、负与它的图象经过的象限归纳列表为:
三、实践应用
例1 已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小?
例2 已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.
例3 画出函数y=-2x+2的图象,结合图象回答下列问题:
(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?
(2)当x取何值时,y=0?
(3)当x取何值时,y>0?
四、交流反思
1.(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;
(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.
当b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴;当b=0时,直线与y轴交于坐标原点.
2.k>0,b>0时,直线经过一、二、三象限;k>0,b<0时,直线经过一、三、四象限;
k<0,b>0时,直线经过一、二、四象限;k<0,b<0时,直线经过二、三、四象限.
五、练习(P50)
六、小结
七、作业(P52,7.)
《一次函数的性质》
教学设计
授课教师:谢瑞鑫
华师大版八年级下册3. 一次函数的性质免费教学设计: 这是一份华师大版八年级下册3. 一次函数的性质免费教学设计,共4页。
初中数学3. 一次函数的性质教学设计及反思: 这是一份初中数学3. 一次函数的性质教学设计及反思,共6页。教案主要包含了华师版八年级下学期等内容,欢迎下载使用。
初中数学华师大版八年级下册3. 一次函数的性质教案: 这是一份初中数学华师大版八年级下册3. 一次函数的性质教案,共6页。教案主要包含了教材分析,学情分析,教学目标,重点,教法,教学媒体准备,教学过程等内容,欢迎下载使用。