搜索
    上传资料 赚现金
    英语朗读宝

    专题17 二次函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376919)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题17 二次函数应用(解答题)(原卷版).doc
    • 解析
      专题17 二次函数应用(解答题)(解析版).doc
    专题17 二次函数应用(解答题)(原卷版)第1页
    专题17 二次函数应用(解答题)(原卷版)第2页
    专题17 二次函数应用(解答题)(原卷版)第3页
    专题17 二次函数应用(解答题)(解析版)第1页
    专题17 二次函数应用(解答题)(解析版)第2页
    专题17 二次函数应用(解答题)(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题17 二次函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376919)

    展开

    这是一份专题17 二次函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376919),文件包含专题17二次函数应用解答题解析版doc、专题17二次函数应用解答题原卷版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
    专题17二次函数应用



    【2021玉林】已知抛物线与x轴交于点A,B两点(A在B的左侧)与y轴交于点C.
    (1)直接写出点A,B,C的坐标;
    (2)将抛物线经过向下平移,使得到的抛物线与x轴交于B, 两点(在B的右侧),顶点D的对应点,若,求的坐标和抛物线的解析式;
    (3)在(2)的条件下,若点Q在x轴上,则在抛物线或上是否存在点P,使以为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.

    【答案】(1)A(-3,0),B(1,0),(0,3);(2)B(3,0),y2=-x2+4x-3;(3)P的坐标为(-2,3),(-1+,-3),(-1-,-3),(0,-3),(4,-3).
    【解析】
    【分析】
    (1)令y=0,即可求出A,B,令x=0,即可求出C的坐标;
    (2)设B(t,0),根据由题意得y2由y1平移所得,可设y2的解析式为:y2=-(x-1)(x-t)=-x2+(1+t)x-t,求出D,判断出△BDB是等腰直角三角形,可得yD=|BB|,即可得到关于t的方程,解出t即可求出B的坐标和y2的解析式;
    (3)分①若Q在B右边,②若Q在B左边:当BQ为边时和当BQ为对角线时,这几种情况讨论即可.
    【详解】
    解:(1)由题意得抛物线与x轴交于点A,B两点(A在B的左侧)与y轴交于点C,
    ∴当y=0时,
    即(x+3)(1-x)=0
    解得x1=-3,x2=1,
    ∴A的坐标为(-3,0),B的坐标为(1,0),
    当x=0时,y=-02-2×0+3=3,
    ∴C的坐标为(0,3),
    综上:A(-3,0),B(1,0),(0,3);
    (2)设B(t,0),
    由题意得y2由y1平移所得,
    ∴a=-1,
    ∴可设y2的解析式为:y2=-(x-1)(x-t)=-x2+(1+t)x-t,
    ∴D(,),
    ∵B和B是对称点,D在对称轴上,∠BDB=90°,
    ∴△BDB是等腰直角三角形,
    ∴yD=|BB|,
    ∴=(t-1),
    解得t=3,
    ∴B(3,0),
    ∴y2=-x2+4x-3;
    (3)①若Q在B右边,则P在x轴上方,且CP∥BQ,
    ∴yP=yC=3,
    此时P不在两条抛物线上,不符合题意舍去;
    ②若Q在B左边,
    当BQ为边时,则CP∥BQ,
    此时yP=yC=3,P点在y1上,
    将yP=3,代入y1得,
    解得x1=0,x2=-2,
    ∴此时P的坐标为(-2,3);
    当BQ为对角线时,则BC∥QP,
    ∵yC-yB=3,
    ∴yQ-yP=3,
    ∵Q在x轴上,
    ∴yP=-3,
    将yP=-3代入y1得,
    解得x1=-1+,x2=-1-,
    将yP=-3代入y2得-x2+4x-3=-3,
    解得x1=0,x2=4,
    ∴P的坐标为:(-1+,-3),(-1-,-3),(0,-3),(4,-3),
    综上:P的坐标为:(-2,3),(-1+,-3),(-1-,-3),(0,-3),(4,-3).
    【点睛】
    本题考查了二次函数的性质,直角三角形斜边上的中线等于斜边的一半,平行四边形的性质,结合题意灵活运用知识点是解题关键.
    【2021安徽】在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.
    (1)判断点B是否在直线y=x+m上,并说明理由;
    (2)求a,b的值;
    (3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
    【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
    (2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
    (3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.
    【解答】解:(1)点B是在直线y=x+m上,理由如下:
    ∵直线y=x+m经过点A(1,2),
    ∴2=1+m,解得m=1,
    ∴直线为y=x+1,
    把x=2代入y=x+1得y=3,
    ∴点B(2,3)在直线y=x+m上;
    (2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
    ∴抛物线只能经过A、C两点,
    把A(1,2),C(2,1)代入y=ax2+bx+1得,
    解得a=﹣1,b=2;
    (3)由(2)知,抛物线为y=﹣x2+2x+1,
    设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),
    ∵顶点仍在直线y=x+1上,
    ∴+q=+1,
    ∴q=﹣﹣1,
    ∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,
    ∴q=﹣﹣1=﹣(p﹣1)2+,
    ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.
    【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.
    【2021北京高级中学】在平面直角坐标系中,为抛物线上任意两点,其中.
    (1)若抛物线的对称轴为,当为何值时,
    (2)设抛物线的对称轴为.若对于,都有,求的取值范围.
    【答案】(1);(2)
    【解析】
    【分析】
    (1)根据抛物线解析式得抛物线必过(0,c),因为,抛物线的对称轴为,可得点M,N关于对称,从而得到的值;
    (2)根据题意知,抛物线开口向上,对称轴为,分3种情况讨论,情况1:当都位于对称轴右侧时,情况2:当都位于对称轴左侧时,情况3:当位于对称轴两侧时,分别求出对应的t值,再进行总结即可.
    【详解】
    解:(1)当x=0时,y=c,
    即抛物线必过(0,c),
    ∵,抛物线的对称轴为,
    ∴点M,N关于对称,
    又∵,
    ∴,;
    (2)由题意知,a>0,
    ∴抛物线开口向上
    ∵抛物线的对称轴为,
    ∴情况1:当都位于对称轴右侧时,即当时,恒成立
    情况2:当都位于对称轴左侧时,即<时,恒不成立
    情况3:当位于对称轴两侧时,即当时,要使,必有,即
    解得,
    ∴3≥2t,

    综上所述,.
    【点睛】
    本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想.
    【2021福建】已知直线交轴于点,交轴于点,二次函数的图象过两点,交轴于另一点,,且对于该二次函数图象上的任意两点,,当时,总有.
    (1)求二次函数的表达式;
    (2)若直线,求证:当时,;
    (3)为线段上不与端点重合的点,直线过点且交直线于点,求与面积之和的最小值.
    【答案】(1);(2)详见解析;(3)的最小值为.
    【解析】
    【分析】
    (1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,B两点的坐标,再根据BC=4,得出点C的坐标,最后利用待定系数法可求二次函数的表达式;
    (2)利用反证法证明即可;
    (3)先求出q的值,利用,得出,设,然后用含t的式子表示出的面积,再利用二次函数的性质求解即可.
    【详解】
    解:(1)对于,
    当时,,所以;
    当时,,,所以,
    又因为,所以或,
    若抛物线过,则当时,随的增大而减少,不符合题意,舍去.
    若抛物线过,则当时,必有随的增大而增大,符合题意.
    故可设二次函数的表达式为,
    依题意,二次函数的图象过,两点,
    所以,解得
    所求二次函数的表达式为.
    (2)当时,直线与直线不重合,
    假设和不平行,则和必相交,设交点为,
    由得,
    解得,与已知矛盾,所以与不相交,
    所以.
    (3)如图,

    因为直线过,所以,
    又因为直线,所以,即,
    所以,,
    所以,所以,
    设,则,

    所以,
    所以


    所以当时,的最小值为.
    【点睛】
    本题考查了一次函数和二次函数的图象与性质、相似三角形的性质与判定、三角形面积等基础知识,注意函数与方程思想、数形结合思想、化归与转化思想及分类与整合思想的运用.
    【2021金昌】如图,在平面直角坐标系中,抛物线交轴于,两点,交轴于点,且,点是第三象限内抛物线上的一动点.
    (1)求此抛物线的表达式;
    (2)若,求点的坐标;
    (3)连接,求面积的最大值及此时点的坐标.

    【答案】(1);(2)(,);(3)面积的最大值是8;点的坐标为(,).
    【解析】
    【分析】
    (1)由二次函数的性质,求出点C的坐标,然后得到点A、点B的坐标,再求出解析式即可;
    (2)由,则点P的纵坐标为,代入解析式,即可求出点P的坐标;
    (3)先求出直线AC的解析式,过点P作PD∥y轴,交AC于点D,则,设点P为(,),则点D为(,),求出PD的长度,利用二次函数的性质,即可得到面积的最大值,再求出点P的坐标即可.
    【详解】
    解:(1)在抛物线中,
    令,则,
    ∴点C的坐标为(0,),
    ∴OC=2,
    ∵,
    ∴,,
    ∴点A为(,0),点B为(,0),
    则把点A、B代入解析式,得
    ,解得:,
    ∴;
    (2)由题意,∵,点C为(0,),
    ∴点P的纵坐标为,
    令,则,
    解得:,,
    ∴点P的坐标为(,);
    (3)设直线AC的解析式为,则
    把点A、C代入,得
    ,解得:,
    ∴直线AC的解析式为;
    过点P作PD∥y轴,交AC于点D,如图:

    设点P 为(,),则点D为(,),
    ∴,
    ∵OA=4,
    ∴,
    ∴,
    ∴当时,取最大值8;
    ∴,
    ∴点P的坐标为(,).
    【点睛】
    本题考查了二次函数的综合问题,二次函数的性质,一次函数的性质,解题的关键是熟练掌握二次函数和一次函数的性质进行解题,注意利用数形结合的思想进行解题.



    二次函数此类问题是中考重难题型之一,通常以函数应用及不等式综合考查!一方面考察学生对综合知识的掌握长度,另一方面考察数学知识的灵活运用。


    此类题应该首先明确它的考题特点,避免盲目和无从下手,同时明确题目所涉及的数学知识及应用,明确题目问题是什么要解决什么样的问题,再结合我们所学习的知识合理解答。


    1.平面直角坐标系中,抛物线过点,,,顶点不在第一象限,线段上有一点,设的面积为,的面积为,.
    (1)用含的式子表示;
    (2)求点的坐标;
    (3)若直线与抛物线的另一个交点的横坐标为,求在时的取值范围(用含的式子表示).
    【答案】(1);(2)或;(3)当时,有<<
    【解析】
    【分析】
    (1)把代入:,即可得到答案;
    (2)先求解抛物线的对称轴,记对称轴与的交点为,确定顶点的位置,分情况利用,求解,从而可得答案;
    (3)分情况讨论,先求解的解析式,联立一次函数与二次函数的解析式,再利用一元二次方程根与系数的关系求解 结合二次函数的性质可得答案.
    【详解】
    解:(1)把代入:,


    (2)
    抛物线为:
    抛物线的对称轴为:
    顶点不在第一象限,
    顶点在第四象限,
    如图,设< 记对称轴与的交点为,









    当>同理可得:
    综上:或
    (3)

    当,设为:

    解得:


    消去得:
    由根与系数的关系得:
    解得:

    当时,
    当时,
    当时,,
    当时,有<<
    当,
    同理可得为:

    同理消去得:

    解得:

    此时,顶点在第一象限,舍去,
    综上:当时,有<<
    【点睛】
    本题考查的是利用待定系数法求解一次函数的解析式,二次函数的解析式,二次函数图像上点的坐标特点,二次函数的性质,同时考查了二次函数与一元二次方程的关系,一元二次方程根与系数的关系,掌握以上知识是解题的关键.
    2.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(-3,0)和B(1,0),与y轴交于点C,顶点为D.

    (1)求解抛物线解析式;
    (2)连接AD,CD,BC,将△OBC沿着x轴以每秒1个单位长度的速度向左平移,得到,点O、B、C的对应点分别为点,,,设平移时间为t秒,当点O'与点A重合时停止移动.记与四边形AOCD的重叠部分的面积为S,请直接写出S与时间t的函数解析式;
    (3)如图2,过抛物线上任意一点M(m,n)向直线l:作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME-MF=?若存在,请求F点的坐标;若不存在,请说明理由.
    【答案】(1)y=-x2-2x+3;(2);(3)存在,.
    【解析】
    【分析】
    (1)运用待定系数法解答即可;
    (2)分0

    相关试卷

    专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940):

    这是一份专题20 综合探究(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376940),文件包含专题20综合探究解答题解析版doc、专题20综合探究解答题原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    专题18 概率(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376925):

    这是一份专题18 概率(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376925),文件包含专题18概率解答题解析版doc、专题18概率解答题原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    专题16 反比例函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376913):

    这是一份专题16 反比例函数应用(解答题)-备战2021年中考数学临考题号押题(全国通用)(28376913),文件包含专题16反比例函数应用解答题解析版doc、专题16反比例函数应用解答题原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map