所属成套资源:2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版)
- 第58讲 随机事件的概率与古典概型(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第61讲 离散型随机变量的均值与方差、正态分布(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第60讲 n次独立重复试验及二项分布(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第62讲 随机抽样与用样本估计总体(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第64讲 求概率统计的综合问题(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 0 次下载
第63讲 变量间的相关关系、统计案例(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版)
展开
这是一份第63讲 变量间的相关关系、统计案例(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版),文件包含第63讲变量间的相关关系统计案例讲教师版docx、第63讲变量间的相关关系统计案例讲学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
第63讲 变量间的相关关系、统计案例 思维导图 知识梳理1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程为=x+,其中==, =-.(3)通过求的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.3.独立性检验(1)2×2列联表设X,Y为两个变量,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(2×2列联表)如下: y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d (2)独立性检验利用随机变量K2(也可表示为χ2)的观测值k=(其中n=a+b+c+d为样本容量)来判断“两个变量有关系”的方法称为独立性检验. 题型归纳题型1 相关关系的判断【例1-1】对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图如图①,对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关【解析】选C 由散点图可得两组数据均线性相关,且图①的线性回归方程斜率为负,图②的线性回归方程斜率为正,则由散点图可判断变量x与y负相关,u与v正相关.【例1-2】(2019·郑州市第一次质量预测)某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份123456人均销售额658347利润率(%)12.610.418.53.08.116.3 根据表中数据,下列说法正确的是( )A.利润率与人均销售额成正相关关系B.利润率与人均销售额成负相关关系C.利润率与人均销售额成正比例函数关系D.利润率与人均销售额成反比例函数关系【解析】选A 画出利润率与人均销售额的散点图,如图.由图可知利润率与人均销售额成正相关关系,故选A.【跟踪训练1-1】已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是( )A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关【解析】选C 因为y=-0.1x+1的斜率小于0,故x与y负相关.因为y与z正相关,可设z=y+,>0,则z=y+=-0.1x++,故x与z负相关.【跟踪训练1-2】在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1 B.0C. D.1【解析】选D 所有样本点均在同一条斜率为正数的直线上,则样本相关系数最大,为1,故选D.【跟踪训练1-3】变量X与Y相应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )A.r2<r1<0 B.0<r2<r1C.r2<0<r1 D.r2=r1【解析】选C 对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r1>0;对于变量V与U而言,V随U的增大而减小,故V与U负相关,即r2<0,故选C.【名师指导】判断相关关系的2种方法(1)散点图法:如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.(2)相关系数法:利用相关系数判定,当|r|越趋近于1相关性越强. 题型2 回归分析【例2-1】(2019·四省八校双教研联考)越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表:周数x654321正常值y556372809099 (1)作出散点图;(2)根据上表数据用最小二乘法求出y关于x的线性回归方程=x+(精确到0.01);(3)根据经验观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及其以上为重度焦虑,若为中度焦虑及其以上,则要进行心理疏导,若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?其中=,iyi=1 452,=91,=-.【解】 (1)(2)=×(6+5+4+3+2+1)=3.5,=×(55+63+72+80+90+99)=76.5,=267.75,=≈-8.83,=76.5+8.83×3.5≈107.41,∴线性回归方程为=-8.83x+107.41.(3)≈1.14>1.12,∴该学生需要进行心理疏导.【例2-2】(2019·合肥市第二次质量检测)为了了解A地区足球特色学校的发展状况,某调查机构统计得到如下数据:年份x20142015201620172018足球特色学校数y/百个0.300.601.001.401.70 (1)根据表中数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|≤0.25,则认为y与x线性相关性较弱);(2)求y关于x的线性回归方程,并预测A地区2019年足球特色学校的个数(精确到个).参考公式及数据:r=,(xi-)2=10,(yi-)2=1.3,≈3.605 6,=,=-.【解】 (1)=2 016,=1,r===>0.75,∴y与x线性相关性很强.(2)===0.36,=-=1-0.36×2 016=-724.76,∴y关于x的线性回归方程是=0.36x-724.76.当x=2019时,=0.36×2019-724.76=2.08,即A地区2019年足球特色学校约有208个.【跟踪训练2-1】(2019·长春市质量监测)某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),图1为选取的15名志愿者身高与臂展的折线图,图2为身高与臂展所对应的散点图,并求得其回归方程为=1.16x-30.75,以下结论中不正确的为( )A.15名志愿者身高的极差小于臂展的极差B.15名志愿者身高和臂展成正相关关系C.可估计身高为190厘米的人臂展为189.65厘米D.身高相差10厘米的两人臂展都相差11.6厘米【解析】选D 对于选项A,15名志愿者臂展的最大值大于身高,而最小值小于身高,所以身高的极差小于臂展的极差,故A正确;对于选项B,由左下到右上,为正相关,正确;选项C就是把x=190代入回归方程得到预估值189.65,正确;而对于选项D,相关关系不是确定的函数关系,所以选项D说法不正确,故选D.【跟踪训练2-2】(2019·贵阳市第一学期监测)互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表: 1日2日3日4日5日外卖甲日接单x/百单529811外卖乙日接单y/百单2310515 (1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;(2)据统计表明,y与x之间具有线性关系.①请用相关系数r对y与x之间的相关性强弱进行判断(若|r|>0.75,则可认为y与x有较强的线性相关关系(r值精确到0.001));②经计算求得y与x之间的回归方程为=1.382x-2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围(x值精确到0.01).相关公式:r=.参考数据:(xi-)(yi-)=66,≈77.【解】(1)由题可知==7(百单),==7(百单).外卖甲的日接单量的方差s=10,外卖乙的日接单量的方差s=23.6,因为=,s<s,即外卖甲平均日接单量与外卖乙相同,且外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①计算可得,相关系数r≈≈0.857>0.75,所以可认为y与x之间有较强的线性相关关系.②令y≥25,得1.382x-2.674≥25,解得x≥20.02,又20.02×100×3=6 006,所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6 006元.【名师指导】一、线性回归分析问题的类型及解题方法1.求线性回归方程(1)利用公式,求出回归系数,.(2)待定系数法:利用回归直线过样本点的中心求系数.2.利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.3.利用回归直线判断正、负相关,决定正相关还是负相关的是系数.二、模型拟合效果的判断(1)残差平方和越小,模型的拟合效果越好.(2)相关指数R2越大,模型的拟合效果越好.(3)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强. 题型3 独立性检验【例3-1】(2019·福州市质量检测)中国房地产业协会主办的中国房价行情网调查的一份数据显示,2018年7月,大部分一线城市的房租租金同比涨幅都在10%以上.某部门研究成果认为,房租支出超过月收入的租户“幸福指数”低,房租支出不超过月收入的租户“幸福指数”高.为了了解甲、乙两小区租户的幸福指数高低,随机抽取甲、乙两小区的租户各100户进行调查.甲小区租户的月收入以[0,3),[3,6),[6,9),[9,12),[12,15](单位:千元)分组的频率分布直方图如图所示.乙小区租户的月收入(单位:千元)的频数分布表如下:月收入[0,3)[3,6)[6,9)[9,12)[12,15]户数38272492 (1)设甲、乙两小区租户的月收入相互独立,记M表示事件“甲小区租户的月收入低于6千元,乙小区租户的月收入不低于6千元”,把频率视为概率,求M的概率;(2)利用频率分布直方图,求所抽取的甲小区100户租户的月收入的中位数;(3)若甲、乙两小区每户的月租费分别为2千元、1千元.请根据条件完成下面的2×2列联表,并说明能否在犯错误的概率不超过0.001的前提下认为“幸福指数与租住的小区”有关. 幸福指数低幸福指数高总 计甲小区租户 乙小区租户 总 计 附:临界值表P(K2≥k)0.100.0100.001k2.7066.63510.828 参考公式:K2=.【解】 (1)记A表示事件“甲小区租户的月收入低于6千元”,记B表示事件“乙小区租户的月收入不低于6千元”,甲小区租户的月收入低于6千元的频率为(0.060+0.160)×3=0.66,故P(A)的估计值为0.66.乙小区租户的月收入不低于6千元的频率为=0.35,故P(B)的估计值为0.35.因为甲、乙两小区租户的月收入相互独立,事件M的概率的估计值为P(M)=P(A)P(B)=0.66×0.35=0.231.(2)设甲小区所抽取的100户的月收入的中位数为t,则0.060×3+(t-3)×0.160=0.5,解得t=5.(3)设H0:幸福指数与租住的小区无关, 幸福指数低幸福指数高总 计甲小区租户6634100乙小区租户3862100总 计10496200 根据2×2列联表中的数据,得到K2的观测值k=≈15.705>10.828,所以能在犯错误的概率不超过0.001的前提下认为“幸福指数与租住的小区”有关.【跟踪训练3-1】(2020·沧州模拟)某班主任对全班50名学生进行了作业量的调查,数据如表: 认为作业量大认为作业量不大总计男生18927女生81523总计262450已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025,P(K2≥6.635)≈0.010.则________(填“有”或“没有”)97.5%的把握认为“学生的性别与认为作业量大有关”.【解析】因为K2=≈5.059>5.024,所以有97.5%的把握认为“学生的性别与认为作业量大有关”.【答案】有【跟踪训练3-2】(2019·郑州市第二次质量预测)为推动更多人去阅读和写作,联合国教科文组织确定每年的4月23日为“世界读书日”,其设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,这200人中通过电子阅读与纸质阅读的人数之比为3∶1.将这200人按年龄(单位:岁)分组,统计得到通过电子阅读的居民的频率分布直方图如图所示.(1)求a的值及通过电子阅读的居民的平均年龄;(2)把年龄在[15,45)的居民称为中青年,年龄在[45,65]的居民称为中老年,若选出的200人中通过纸质阅读的中老年有30人,请完成下面2×2列联表,并判断是否有97.5%的把握认为阅读方式与年龄有关? 电子阅读纸质阅读总计中青年 中老年 总计 附:P(K2≥k0)0.1500.1000.0500.0250.010k02.0722.7063.8415.0246.635 K2=.【解】(1)由题中频率分布直方图可得10×(0.01+0.015+a+0.03+0.01)=1,解得a=0.035,所以通过电子阅读的居民的平均年龄为20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5(岁).(2)这200人中通过电子阅读的人数为200×=150,通过纸质阅读的人数为200-150=50.因为(0.01+0.015+0.035)∶(0.03+0.01)=3∶2,所以通过电子阅读的中青年的人数为150×=90,中老年的人数为150-90=60.2×2列联表为 电子阅读纸质阅读总计中青年9020110中老年603090总计15050200 由表中数据,得K2=≈6.061>5.024,所以有97.5%的把握认为阅读方式与年龄有关.【名师指导】2个明确(1)明确两类主体;(2)明确研究的两个问题2个关键(1)准确画出2×2列联表;(2)准确求解K23个步骤(1)根据样本数据制成2×2列联表;(2)根据公式K2=,计算K2的值;(3)查表比较K2与临界值的大小关系,作统计判断
相关试卷
这是一份2024年新高考数学一轮复习题型归纳与达标检测第63讲变量间的相关关系、统计案例(讲)(Word版附解析),共6页。试卷主要包含了变量间的相关关系,两个变量的线性相关,独立性检验等内容,欢迎下载使用。
这是一份高中数学高考第63讲 变量间的相关关系、统计案例(讲)(学生版),共12页。试卷主要包含了变量间的相关关系,两个变量的线性相关,独立性检验等内容,欢迎下载使用。
这是一份高中数学高考第63讲 变量间的相关关系、统计案例(达标检测)(学生版),共13页。