考点03 与圆有关的计算-2022年中考数学一轮复习基础夯实(安徽专用)
展开考点三 与圆有关的计算
知识点整合
一、正多边形的有关概念
正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.
正多边形半径:正多边形外接圆的半径叫做正多边形半径.
正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.
正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.
二、与圆有关的计算公式
1.弧长和扇形面积的计算
扇形的弧长l=;扇形的面积S==.
2.圆锥与侧面展开图
(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.
(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,
圆锥的侧面积为S圆锥侧=.
圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).
在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.
考向一 正多边形与圆
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
典例引领、
1.(2019·乐清市英华学校九年级期中)如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是( )
A.30° B.45° C.60° D.90°
【答案】A
【分析】
根据正六边形的内角和求得∠BCD,然后根据等腰三角形的性质即可得到结论.
【详解】
∵在正六边形ABCDEF中,∠BCD==120°,BC=CD,
∴∠CBD=(180°﹣120°)=30°,
故选A.
【点睛】
本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.
2.(2015·全国九年级课时练习)同圆的内接正三角形与内接正方形的边长的比是( )
A. B. C. D.
【答案】A
【解析】
试题解析:设圆的半径为R,
如图(一),连接OB,过O作OD⊥BC于D,
则∠OBC=30°,BD=OB•cos30°=R,
故BC=2BD=R;
如图(二),连接OB、OC,过O作OE⊥BC于E,
则△OBE是等腰直角三角形,
2BE2=OB2,即BE=R,
故BC=R;
故圆内接正三角形、正方形的边长之比为.
故选A.
变式拓展
1.(2020·河北衡水市·九年级期中)如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
【答案】C
【分析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
2.(2015·浙江金华市·中考真题)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
【答案】C
【解析】
试题分析:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,
∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,
∴∠OFA=∠OAF=30°,
∴∠COF=30°+30°=60°,
∴FI=rsin60°=,
∴EF=,
∵AO=2OI,
∴OI=,CI=r﹣=,
∴,
∴,
∴,
即则的值是.
故选C.
考点:正多边形与圆的关系.正多边形的半径③中心角边心距
3.(2017·河南九年级其他模拟)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )
A. B. C. D.
【答案】D
【解析】
【分析】
由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.
【详解】
如图1,
∵OC=1,
∴OD=1×sin30°=;
如图2,
∵OB=1,
∴OE=1×sin45°=;
如图3,
∵OA=1,
∴OD=1×cos30°=,
则该三角形的三边分别为:、、,
∵()2+()2=()2,
∴该三角形是以、为直角边,为斜边的直角三角形,
∴该三角形的面积是,
故选:D.
【点睛】
考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。
4.(2020·河北九年级其他模拟)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )
A. B. C. D.
【答案】A
【解析】
【分析】
图中阴影部分面积等于6个小半圆的面积和﹣(大圆的面积﹣正六边形的面积)即可得到结果.
【详解】
解:6个月牙形的面积之和,
故选A.
【点睛】
本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.
5.(2016·陕西九年级专题练习)已知圆的半径是,则该圆的内接正六边形的面积是( )
A. B. C. D.
【答案】C
【解析】
试题分析:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,
因而等边三角形的面积是3,∴正六边形的面积=18,故选C.
【考点】正多边形和圆.
考向二 弧长和扇形面积
1.弧长公式:;
2.扇形面积公式:或.
典例引领
1.(2020·江苏邗江区·九年级期末)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
【答案】D
【解析】
【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
【详解】过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,AD=BD=,
∴△ABC的面积为BC•AD==,
S扇形BAC==,
∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
故选D.
【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
2.(2020·山西九年级专题练习)如图,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
A. B. C. D.
【答案】A
【解析】
【分析】
连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.
【详解】
连接OD,过点O作OH⊥AC,垂足为 H,
则有AD=2AH,∠AHO=90°,
在Rt△ABC中,∠ABC=90°,AB=,BC=2,tan∠A=,
∴∠A=30°,
∴OH=OA=,AH=AO•cos∠A=,∠BOC=2∠A=60°,
∴AD=2AH=,
∴S阴影=S△ABC-S△AOD-S扇形BOD==,
故选A.
【点睛】
本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
3.(2019·安徽九年级专题练习)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求的长.
【答案】(1)证明见解析;(2)
【详解】
分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;
(2)根据弧长公式解答即可.
详证明:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵OC∥BD,
∴∠AEO=∠ADB=90°,
即OC⊥AD,
∴AE=ED;
(2)∵OC⊥AD,
∴ ,
∴∠ABC=∠CBD=36°,
∴∠AOC=2∠ABC=2×36°=72°,
∴ =.
点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.
变式拓展
1.(2020·黑龙江甘南县·九年级其他模拟)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).
【答案】(1)直线BC与⊙O相切,证明见解析;(2)
【分析】
(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.
【详解】
解:(1)BC与⊙O相切.理由如下:
连接OD.∵AD是∠BAC的平分线
∴∠BAD=∠CAD.
∵OD=OA
∴∠OAD=∠ODA
∴∠CAD=∠ODA
∴OD∥AC
∴∠ODB=∠C=90°,即OD⊥BC.
又∵BC过半径OD的外端点D,∴BC与⊙O相切;
(2)设OF=OD=x,则OB=OF+BF=x+2.
根据勾股定理得:,
即,
解得:x=2,即OD=OF=2
∴OB=2+2=4.
Rt△ODB中
∵OD=OB
∴∠B=30°
∴∠DOB=60°
∴S扇形DOF==
则阴影部分的面积为S△ODB﹣S扇形DOF==.
故阴影部分的面积为.
2.(2020·江西定南县·九年级期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
【答案】(1)证明见解析;(2).
【分析】
(1)连接,易得,由,易得,等量代换得,利用平行线的判定得,由切线的性质得,得出结论;
(2)连接,利用(1)的结论得,易得,得出,利用扇形的面积公式和三角形的面积公式得出结论.
【详解】
(1)证明:连接,
,
,
∵AB=AC,
∴∠ABC=∠ACB.
∴∠ODB=∠ACB,
∴OD∥AC.
∵DF是⊙O的切线,
∴DF⊥OD.
∴DF⊥AC.
(2)连结OE,
∵DF⊥AC,∠CDF=22.5°.
∴∠ABC=∠ACB=67.5°,∴∠BAC=45°.
∵OA=OE,∴∠AOE=90°.
的半径为4,
,,
.
【点睛】
本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.
3.(2020·江苏九年级期中)如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.
(1)求证:BD=CD;
(2)若圆O的半径为3,求的长.
【答案】(1)证明过程见解析;(2)π
【分析】
(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;
(2)首先求出的度数,再利用弧长公式直接求出答案.
【详解】
(1)∵四边形ABCD内接于圆O,
∴∠DCB+∠BAD=180°,
∵∠BAD=105°,
∴∠DCB=180°﹣105°=75°,
∵∠DBC=75°,
∴∠DCB=∠DBC=75°,
∴BD=CD;
(2)∵∠DCB=∠DBC=75°,
∴∠BDC=30°,
由圆周角定理,得,的度数为:60°,
故,
答:的长为π.
考点:(1)圆内接四边形的性质;(2)弧长的计算.
4.(2020·江苏无锡市·九年级期中)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.
【答案】(1)证明见解析;(2).
【分析】
(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
【详解】
解:(1)证明:连接OD,
∵∠ACD=60°,
∴由圆周角定理得:∠AOD=2∠ACD=120°.
∴∠DOP=180°﹣120°=60°.
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°.
∴OD⊥DP.
∵OD为半径,
∴DP是⊙O切线.
(2)∵∠ODP=90°,∠P=30°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3cm.
∴图中阴影部分的面积
考点03 全等三角形-2021年中考数学一轮复习基础夯实(安徽专用): 这是一份考点03 全等三角形-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点03全等三角形原卷版docx、考点03全等三角形解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
考点03 与圆有关的计算-2021年中考数学一轮复习基础夯实(安徽专用): 这是一份考点03 与圆有关的计算-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点03与圆有关的计算原卷版docx、考点03与圆有关的计算解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
考点03 实数的运算-2021年中考数学一轮复习基础夯实(安徽专用): 这是一份考点03 实数的运算-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点03实数的运算原卷版docx、考点03实数的运算解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。