![专题06 二次函数综合题(原卷版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第1页](http://img-preview.51jiaoxi.com/2/3/12896970/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 二次函数综合题(原卷版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第2页](http://img-preview.51jiaoxi.com/2/3/12896970/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 二次函数综合题(原卷版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第3页](http://img-preview.51jiaoxi.com/2/3/12896970/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 二次函数综合题(解析版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第1页](http://img-preview.51jiaoxi.com/2/3/12896970/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 二次函数综合题(解析版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第2页](http://img-preview.51jiaoxi.com/2/3/12896970/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题06 二次函数综合题(解析版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第3页](http://img-preview.51jiaoxi.com/2/3/12896970/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022年中考数学必考的十五种类型大题夺分技巧再训练
专题06 二次函数综合题 -2022年中考数学必考的十五种类型大题夺分技巧再训练
展开
这是一份专题06 二次函数综合题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题06二次函数综合题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题06二次函数综合题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
专题06 二次函数综合题1.如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.2.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.3.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△PAC面积的最大值及此时点P的坐标.4.综合与探究在平面直角坐标系中,抛物线yx2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为 ,点M的坐标为 ,cos∠ABO= ;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为 ;(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.6.如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.7.已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是? 8.若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m时,求点P的坐标;②求m的最大值.9.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(,0),直线BC的解析式为yx+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.10.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQOQ的最小值.11.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.12.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结PB,求PC+PB的最小值.13.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:yx2x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.
相关试卷
这是一份专题08 数据描述与分析问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题08数据描述与分析问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题08数据描述与分析问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份专题13数字图形规律探索问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题13数字图形规律探索问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题13数字图形规律探索问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份专题15图形变换问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题15图形变换问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题15图形变换问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)