![专题15图形变换问题(原卷版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第1页](http://img-preview.51jiaoxi.com/2/3/12896977/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题15图形变换问题(原卷版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第2页](http://img-preview.51jiaoxi.com/2/3/12896977/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题15图形变换问题(解析版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第1页](http://img-preview.51jiaoxi.com/2/3/12896977/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题15图形变换问题(解析版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第2页](http://img-preview.51jiaoxi.com/2/3/12896977/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题15图形变换问题(解析版) -2022年中考数学必考的十五种类型大题夺分技巧再训练第3页](http://img-preview.51jiaoxi.com/2/3/12896977/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022年中考数学必考的十五种类型大题夺分技巧再训练
专题15图形变换问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练
展开
这是一份专题15图形变换问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题15图形变换问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题15图形变换问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
专题15 图形变换问题1.如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【答案】见解析。【解析】(1)想办法证明∠MAE=∠MAN=45°,根据SAS证明三角形全等即可.(2)设CD=BC=x,则CM=x﹣3,CN=x﹣2,在Rt△MCN中,利用勾股定理构建方程即可解决问题.(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN, ∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.2.如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.【答案】见解析。【解析】(1)依据中心对称的性质,即可得到点A关于点O的对称点A1;(2)依据线段A1B绕点A1顺时针旋转90°得点B对应点B1,即可得出旋转后的线段A1B1;(2)依据割补法进行计算,即可得到四边形ABA1B1的面积.解:(1)如图所示,点A1即为所求;(2)如图所示,线段A1B1即为所求;(3)如图,连接BB1,过点A作AE⊥BB1,过点A1作A1F⊥BB1,则四边形ABA1B1的面积8×28×4=24.3.规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是 ;A.矩形 B.正五边形 C.菱形 D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有 个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【答案】见解析。【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:4.如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.【答案】见解析。【分析】(1)结论:四边形ABDF是菱形.根据邻边相等的平行四边形是菱形证明即可.(2)设OA=x,OB=y,构建方程组求出2xy即可解决问题.解:(1)结论:四边形ABDF是菱形.∵CD=DB,CE=EA,∴DE∥AB,AB=2DE,由旋转的性质可知,DE=EF,∴AB=DF,AB∥DF,∴四边形ABDF是平行四边形,∵BC=2AB,BD=DC,∴BA=BD,∴四边形ABDF是菱形.(2)连接BF,AD交于点O.∵四边形ABDF是菱形,∴AD⊥BF,OB=OF,AO=OD,设OA=x,OB=y,则有,∴x+y=4,∴x2+2xy+y2=16,∴2xy=7,∴S菱形ABDFBF×AD=2xy=7.5.如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是 .(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.【答案】见解析。【分析】(1)如图①中,只要证明△PMN的等腰直角三角形,再利用三角形的中位线定理即可解决问题.(2)如图②中,结论仍然成立.连接AD,延长BE交AD于点H.由△ECB≌△DCA,推出BE=AD,∠DAC=∠EBC,即可推出BH⊥AD,由M、N、P分别为AE、BD、AB的中点,推出PM∥BE,PMBE,PN∥AD,PNAD,推出PM=PN,∠MPN=90°,可得BE=2PM=2MNMN.解:(1)如图①中,∵AM=ME,AP=PB,∴PM∥BE,PMBE,∵BN=DN,AP=PB,∴PN∥AD,PNAD,∵AC=BC,CD=CE,∴AD=BE,∴PM=PN,∵∠ACB=90°,∴AC⊥BC,∴∵PM∥BC,PN∥AC,∴PM⊥PN,∴△PMN的等腰直角三角形,∴MNPM,∴MN•BE,∴BEMN,故答案为BEMN.(2)如图②中,结论仍然成立.理由:连接AD,延长BE交AD于点H.∵△ABC和△CDE是等腰直角三角形,∴CD=CE,CA=CB,∠ACB=∠DCE=90°,∵∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ACD=∠ECB,∴△ECB≌△DCA(AAS),∴BE=AD,∠DAC=∠EBC,∵∠AHB=180°﹣(∠HAB+∠ABH)=180°﹣(45°+∠HAC+∠ABH)=∠180°﹣(45°+∠HBC+∠ABH)=180°﹣90°=90°,∴BH⊥AD,∵M、N、P分别为AE、BD、AB的中点,∴PM∥BE,PMBE,PN∥AD,PNAD,∴PM=PN,∠MPN=90°,∴BE=2PM=2MNMN. 6.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CFAD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.【答案】见解析。【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE=90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=ACa,由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AGaCDBC;(3)将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,可得当点A,点P,点N,点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵把AD绕点A逆时针旋转90°,得到AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,DEAD,又∵AB=AC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°,∵点F是DE的中点,∴CFDEAD;(2)AGBC,理由如下:如图2,过点G作GH⊥BC于H,∵BD=2CD,∴设CD=a,则BD=2a,BC=3a,∵∠BAC=90°,AB=AC,∴AB=ACa,由(1)可知:△BAD≌△CAE,∴BD=CE=2a,∵CF=DF,∴∠FDC=∠FCD,∴tan∠FDC=tan∠FCD,∴2,∴GH=2CH,∵GH⊥BC,∠ABC=45°,∴∠ABC=∠BGH=45°,∴BH=GH,∴BGBH∵BH+CH=BC=3a,∴CH=a,BH=GH=2a,∴BG=2a,∴AG=BG﹣ABaCDBC;(3)如图3﹣1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时,如图3﹣2,连接MC,∵将△BPC绕点B顺时针旋转60°得到△BNM,∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BDPD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴PD=PD+AP,∴PDm,∴BDPDm,由(1)可知:CE=BDm.7.已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:APAC;(2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.【答案】见解析。【解析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=ADABAC.(2)解:∵AC=BC=6,∠C=90°,∴AB12,∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴,∵AD=7,∴,∴DH,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1,∴A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2,∴AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵sinA,∴,∴x,∴AD=AB﹣BD,观察图形可知当6<a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.、
相关试卷
这是一份专题08 数据描述与分析问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题08数据描述与分析问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题08数据描述与分析问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份专题13数字图形规律探索问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题13数字图形规律探索问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题13数字图形规律探索问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份专题14尺规作图问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题14尺规作图问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题14尺规作图问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
![语文朗读宝](http://img.51jiaoxi.com/images/261b2df77236a6bceea0f9877448dc98.png)