专题2.3 平行四边形的性质与判定学习质量检测卷-2021-2022学年八年级数学下学期期中考试专题复习(人教版)
展开专题2.3平行四边形的性质与判定学习质量检测卷
班级:_________ 姓名:______________ 座号:__________ 分数:___________
注意事项:
本试卷满分120分,考试时间60分钟,试题共28题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级、座号填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.如图,在平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB的长是( )
A.3 B.4 C.5 D.2.5
【分析】根据平行四边形的性质可证明△BEC是直角三角形,利用勾股定理可求出BC的长,利用角平分线的性质以及平行线的性质得出∠ABE=∠AEB,∠DEC=∠DCE,进而利用平行四边形对边相等进而得出答案.
【解析】∵四边形ABCD是平行四边形,∠ABC、∠BCD的角平分线的交点E落在AD边上,
∴∠BEC=12×180°=90°,
∵BE=4,CE=3,
∴BC=42+32=5,
∵∠ABE=∠EBC,∠AEB=∠EBC,∠DCE=∠ECB,∠DEC=∠ECB,
∴∠ABE=∠AEB,∠DEC=∠DCE,
∴AB=AE,DE=DC,即AE=ED=12AD=12BC=2.5,
由题意可得:AB=CD,AD=BC,
∴AB=AE=2.5.
故选:D.
2.下列结论正确的是( )
A.平行四边形是轴对称图形
B.平行四边形的对角线相等
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
【分析】分别利用平行四边形的性质和判定逐项判断即可.
【解析】A、平行四边形不一定是轴对称图形,故A错误;
B、平行四边形的对角线不相等,故B错误;
C、平行四边形的对边平行且相等,故C正确;
D、平行四边形的对角相等,邻角互补,故D错误.
故选:C.
3.如图,平行四边形ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A.12 B.15 C.18 D.21
【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.
【解析】∵▱ABCD的周长为36,
∴2(BC+CD)=36,则BC+CD=18.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,
∴OD=OB=12BD=6.
又∵点E是CD的中点,
∴OE是△BCD的中位线,DE=12CD,
∴OE=12BC,
∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,
故选:B.
4.如图,在平行四边形ABCD中,AB=4,BC=6,对角线AC、BD相交于点O,则OA的取值范围是( )
A.2<OA<10 B.1<OA<5 C.4<OA<6 D.2<OA<8
【分析】由AB=4,BC=6,利用三角形的三边关系,即可求得2<AC<10,然后由四边形ABCD是平行四边形,求得OA的取值范围.
【解析】∵AB=4,BC=6,
∴2<AC<10,
∵四边形ABCD是平行四边形,
∴AO=12AC,
∴1<OA<5,
故选:B.
5.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是( )
A.22 B.16 C.18 D.20
【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,OA=6,根据勾股定理可求得OB的长,继而求得答案.
【解析】∵四边形ABCD是平行四边形,AC=12,
∴OA=12AC=6,BD=2OB,
∵AB⊥AC,AB=8,
∴OB=82+62=10,
∴BD=2OB=20.
故选:D.
6.如图▱ABCD的对角线交于点O,∠ACD=70°,BE⊥AC,则∠ABE的度数为( )
A.50° B.40° C.30° D.20°
【分析】由平行四边的性质可知AB∥CD,则结合已知条件可求出∠AEB的度数,进而可求出∠ABE的度数.
【解析】∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠AEB=70°,
∵BE⊥AC,
∴∠AEB=90°,
∴∠ABE=90°﹣70°=20°,
故选:D.
7.如图,在平行四边形ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论,其中正确的有( )个
①DE=DF;
②AG=GF:
③AF=DF:
④BG=GC;
⑤BF=EF,
A.1 B.2 C.3 D.4
【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.
【解析】∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,即AB∥CE,
∴∠ABF=∠E,
∵DE=CD,
∴AB=DE,
在△ABF和△DEF中,
∵∠ABF=∠E∠AFB=∠DFEAB=DE,
∴△ABF≌△DEF(AAS),
∴AF=DF,BF=EF;
可得③⑤正确,
故选:B.
8.平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是( )
A.BE=DF B.AF∥CE C.AE=CF D.∠BAE=∠DCF
【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.
【解析】如图,连接AC与BD相交于O,
在▱ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;
B、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;
C、若AE=CF,则无法判断OE=OE,故本选项符合题意;
D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;
故选:C.
9.如图,▱ABCD的对角线AC与BD相交于点O,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A.BE=DF B.∠BAE=∠DCF C.AF∥CE D.AE=CF
【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.
【解析】在▱ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;
B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;
C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;
D、若AE=CF,则无法判断OE=OF,故本选项符合题意;
故选:D.
10.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为( )
A.2 B.5 C.7 D.9
【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为6.5,最小值是2.5,可解答.
【解析】连接DN,
∵ED=EM,MF=FN,
∴EF=12DN,
∴DN最大时,EF最大,DN最小时,EF最小,
∵N与B重合时DN最大,
此时DN=DB=AD2+BD2=52+122=13,
∴EF的最大值为6.5.
∵∠A=90°,AD=5,
∴DN≥5,
∴EF≥2.5,
∴EF长度的可能为5;
故选:B.
11.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE;④EG=EF,其中正确的个数是( )
A.1 B.2 C.3 D.4
【分析】由平行四边形的性质可得AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.
【解析】∵四边形ABCD是平行四边形
∴AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD
∵BD=2AD
∴BO=DO=AD=BC,且点E是AC中点
∴BE⊥AC,
∴①正确
∵E、F、分别是OC、OD中点
∴EF∥DC,CD=2EF
∵G是AB中点,BE⊥AC
∴AB=2BG=2GE,且CD=AB,CD∥AB
∴BG=EF=GE,EF∥CD∥AB
∴四边形BGFE是平行四边形,
∴②④正确,
∵四边形BGFE是平行四边形,
∴BG=EF,GF=BE,且GE=GE
∴△BGE≌△FEG(SSS)
∴③正确
故选:D.
12.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动( )秒时,以点P、Q、E、F为顶点的四边形是平行四边形.
A.2 B.3 C.3或5 D.4或5
【分析】由平行四边形的性质可得AD∥BC,AD=BC,由平行线的性质可得BF=DF=12cm,可得AD=AF+DF=18cm=BC,由平行四边形的性质可得PF=EQ,列出方程可求解.
【解析】∵四边形ABCD是平行四边形
∴AD∥BC,AD=BC
∴∠ADB=∠MBC,且∠FBM=∠MBC
∠ADB=∠FBM
∴BF=DF=12cm
∴AD=AF+DF=18cm=BC,
∵点E是BC的中点
∴EC=12BC=9cm,
∵以点P、Q、E、F为顶点的四边形是平行四边形
∴PF=EQ
∴6﹣t=9﹣2t,或6﹣t=2t﹣9
∴t=3或5
故选:C.
二.填空题(共8小题,每题3分,满分24分)
13.已知四边形ABCD中,AD∥BC,添加下列条件:①AD=BC,②AB=DC,③∠A=∠C,④∠A+∠D=180°其中能使四边形ABCD成为平行四边形的有 ①③④ (填写序号)
【分析】利用反推法,假如四边形ABCD是平行四边形且AD∥BC,看推出什么结论,那么结论就是要添加的条件,对照选项找出即可.
【解析】因为两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.注意:一组对边平行,一组对角相等的四边形是平行四边形.故能使四边形成为平行四边形的条件的序号有:①③④,
故答案为:①③④.
14.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为 2400 米.
【分析】由D为AC的中点、E为BC的中点,可得出DE为△ABC的中位线,根据DE的长度结合三角形中位线定理即可得出AB的长度.
【解析】∵D为AC的中点,E为BC的中点,
∵DE为△ABC的中位线,
又∵DE=1200m,
∴AB=2DE=2400m.
故答案是:2400.
15.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是 120° .
【分析】根据三角形中位线定理得到PF=12BC,PE=12AD,根据题意得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.
【解析】∵点P是对角线BD的中点,点E、F分别是AB、CD的中点,
∴PF=12BC,PE=12AD,又AD=BC,
∴PE=PF,
∴∠PFE=∠PEF=30°,
∴∠EPF=120°,
故答案为:120°.
16.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是 14 .
【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.
【解析】∵F,G分别为BC,CD的中点,
∴FG=12BD=4,FG∥BD,
∵E,H分别为AB,DA的中点,
∴EH=12BD=4,EH∥BD,
∴FG∥EH,FG=EH,
∴四边形EFGH为平行四边形,
∴EF=GH=12AC=3,
∴四边形EFGH的周长=3+3+4+4=14,
故答案为:14
17.如图,平行四边形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DE+DF的长度为 4cm .
【分析】利用平行四边形的性质得出AD∥BC,进而得出∠AEB=∠CBF,再利用角平分线的性质得出∠ABF=∠CBF,进而得出∠AEB=∠ABF,即可得出AB=AE,同理可得:BC=CF,即可得出答案.
【解析】∵平行四边形ABCD,
∴AD∥BC,
∴∠AEB=∠CBF,
∵BE平分∠ABC,
∴∠ABF=∠CBF,
∴∠AEB=∠ABF,
∴AB=AE,
同理可得:BC=CF,
∵AB=3cm,BC=5cm,
∴AE=3cm.CF=5cm,
∴DE=5﹣3=2cm,DF=5﹣3=2cm,
∴DE+DF=2+2=4cm,
故答案为:4cm.
18.如图,平行四边形ABCD的对角线交于坐标原点O,点A的坐标为(﹣3,2),点B的坐标为(﹣1,﹣2),则点C的坐标为 (3,﹣2) .
【分析】根据平行四边形是中心对称的特点可知,点A与点C关于原点对称,所以C的坐标为(3,﹣2).
【解析】∵平行四边形ABCD的对角线交于坐标原点O,
∴A点与C点关于原点对称,
∴C点坐标为(3,﹣2).
故答案为:(3,﹣2).
19.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在线段BC上一动点,以AC为对角线的平行四边形ADCE中,则DE的最小值是 6 .
【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【解析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=12AB=3,
∴DE=2OD=6.
故答案为:6.
20.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为 2秒或3.5秒 .
【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,
①当Q运动到E和C之间时,设运动时间为t,则得:9﹣3t=5﹣t,解方程即可,
②当Q运动到E和B之间时,设运动时间为t,则得:3t﹣9=5﹣t,解方程即可.
【解析】∵E是BC的中点,
∴BE=CE=12BC=9,
∵AD∥BC,
∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,
①当Q运动到E和C之间时,设运动时间为t,
则得:9﹣3t=5﹣t,
解得:t=2,
②当Q运动到E和B之间时,设运动时间为t,
则得:3t﹣9=5﹣t,
解得:t=3.5;
∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形,
故答案为:2秒或3.5秒.
三.解答题(共8小题,共46分)
21.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.
(1)求证:AC=ED;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.
【分析】(1)由平行四边形的性质可得AD∥BC,AD=BC,由平行线的性质和等腰三角形的性质可得∠B=∠DAE,由SAS可证△ABC≌△EAD,可得AC=ED;
(2)通过证明△ABE为等边三角形,可得∠BAE=60°,由全等三角形的性质可求解.
【解答】证明:(1)∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
∴∠DAE=∠AEB,
∵AB=AE,
∴∠AEB=∠B,
∴∠B=∠DAE,
∵在△ABC和△AED中,
AB=AE∠B=∠DAEAD=BC,
∴△ABC≌△EAD(SAS)
∴AC=ED;
(2)∵AE平分∠DAB,
∴∠DAE=∠BAE,
又∵∠DAE=∠AEB,
∴∠BAE=∠AEB=∠B,
∴△ABE为等边三角形,
∴∠BAE=60°,
∵∠EAC=25°,
∴∠BAC=85°.
∵△ABC≌△EAD,
∴∠AED=∠BAC=85°.
22.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.
【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;
(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.
【解答】(1)证明:∵AE为∠ADB的平分线,
∴∠DAE=∠BAE.
∵四边形ABCD是平行四边形,
∴AD∥BC,CD=AB.
∴∠DAE=∠E.
∴∠BAE=∠E.
∴AB=BE.
∴CD=BE.
(2)解:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠BAF=∠DFA.
∴∠DAF=∠DFA.
∴DA=DF.
∵F为DC的中点,AB=4,
∴DF=CF=DA=2.
∵DG⊥AE,DG=1,
∴AG=GF.
∴AG=3.
∴AF=2AG=23.
在△ADF和△ECF中,∠DAF=∠E∠ADF=∠ECFDF=CF,
∴△ADF≌△ECF(AAS).
∴AF=EF,
∴AE=2AF=43.
23.如图,平行四边形ABCD中,AE⊥AD交BD于点E,CF⊥BC交BD于点F,连接AF、CE.
求证:AF=CE.
【分析】先依据ASA判定△ADE≌△CBF,即可得出AE=CF,AE∥CF,进而判定四边形AECF是平行四边形,即可得到AF=CE.
【解答】证明:∵AE⊥AD交BD于点E,CF⊥BC交BD于点F,
∴∠DAE=∠BCF=90°,
∵平行四边形ABCD中,AD∥BC,
∴∠ADE=∠CBF,
又∵平行四边形ABCD中,AD=BC,
∴△ADE≌△CBF(ASA),
∴AE=CF,∠AED=∠CFB,
∴AE∥CF,
∴四边形AECF是平行四边形,
∴AF=CE.
24.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF.
(1)求证:△ACD≌△CBF;
(2)以AD为边作等边三角形△ADE,点D在线段BC上的何处时,四边形CDEF是平行四边形.
【分析】(1)直接利用等边三角形的性质结合全等三角形的判定与性质得出答案;
(2)根据全等三角形的性质得出∠BCF=∠DAC,AD=CF,求出DE=CF,求出∠BDE=∠BCF,推出DE∥CF,根据平行四边形的判定推出即可.
【解答】(1)证明:∵△ABC为等边三角形,
∴∠B=∠ACD=60°,AC=BC,
在△ACD和△CBF中
AC=BC∠ACD=∠BCD=BF,
∴△ACD≌△CBF(SAS);
(2)解:D在线段BC上任意位置(但D,C不重合),四边形CDEF是平行四边形,
∵△ACD≌△CBF,
∴∠BCF=∠DAC,AD=CF,
∵AD=DE,
∴DE=CF,
∵∠ACD=∠ADE=60°,∠ADB=∠ADE+∠BDE=∠ACD+∠DAC,
∴60°+∠DAC=60°+∠BDE,
∴∠DAC=∠BDE,
∵∠BCF=∠DAC,
∴∠BDE=∠BCF,
∴DE∥CF,
∵DE=CF,
∴四边形CDEF的形状是平行四边形.
25.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.
(1)求证:四边形CMAN是平行四边形
(2)已知DE=8,FN=6,求BN的长.
【分析】(1)欲证明四边形AMCN是平行四边形,只要证明CM∥AN,AM∥CN即可;
(2)首先证明△MDE≌△NBF,推出ME=NF=1,在Rt△DME中,根据勾股定理即可解决问题.
【解答】(1)证明:∵AE⊥BD,CF⊥BD,
∴AM∥CN,
∵四边形ABCD是平行四边形,
∴CM∥AN
∴四边形CMAN是平行四边形;
(2)解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADE=∠CBF,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,
∴△ADE≌△CBF(AAS);
∴DE=BF=8,
∵FN=6,
∴BN=82+62=10.
26.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.
【分析】(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;
(2)根据平行四边形的性质及(1)的结论可得BM=DN,BM∥DN,则由有一组对边平行且相等的四边形是平行四边形即可证明.
【解答】证明:(1)四边形ABCD是平行四边形,
∴∠DAB=∠BCD,
∴∠EAM=∠FCN,
又∵AD∥BC,
∴∠E=∠F.
∵在△AEM与△CFN中,
∠EAM=∠FCNAE=CF∠E=∠F,
∴△AEM≌△CFN(ASA);
(2)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD
又由(1)得AM=CN,
∴BM=DN,BM∥DN,
∴四边形BMDN是平行四边形.
27.如图,在四边形ABCD中,AD∥CB,E为BD中点,延长CD到点F,使DF=CD.
(1)求证:AE=CE;
(2)求证:四边形ABDF为平行四边形;
(3)若CD=1,AF=2,∠BEC=2∠F,求四边形ABDF的面积.
【分析】(1)由AAS证明△ADE≌△CBE,即可得出AE=CE;
(2)先证明四边形ABCD是平行四边形,得出AB∥CD,AB=CD,证出AB=DF,即可得出四边形ABDF为平行四边形;
(3)由平行四边形的性质得出∠F=∠DBA,BD=AF=2,AB=DF,证出∠DBA=∠BAC,得出AE=BE=DE,证出∠BAD=90°,由勾股定理求出AD=BD2-AB2=3,即可得出四边形ABDF的面积.
【解答】(1)证明:∵AD∥CB,
∴∠DAC=∠BCA,
∵E为BD中点,
∴DE=BE,
在△ADE和△CBE中,∠DAC=∠BCA∠AED=∠CEBDE=BE,
∴△ADE≌△CBE(AAS),
∴AE=CE;
(2)证明:由(1)得:AE=CE,BE=DE,
∴四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵DF=CD,
∴AB∥DF,AB=DF,
∴四边形ABDF为平行四边形;
(3)解:∵四边形ABDF为平行四边形,
∴∠F=∠DBA,BD=AF=2,AB=DF,
∵∠BEC=2∠F,∠BEC=∠DBA+∠BAC,
∴∠DBA=∠BAC,
∴AE=BE=DE,
∴∠BAD=90°,
∵AB=CD=1,
∴AD=BD2-AB2=3,
∵DF=AB=1,
∴四边形ABDF的面积=DF×AD=3.
28.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=a-21+21-a+16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)
(1)求B、C两点的坐标;
(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;
(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.
【分析】(1)根据二次根式的性质得出a,b的值进而得出答案;
(2)由题意得:QP=2t,QO=t,PB=21﹣2t,QC=16﹣t,根据平行四边形的判定可得21﹣2t=16﹣t,再解方程即可;
(3)①当PQ=CQ时,122+t2=(16﹣t)2,解方程得到t的值,再求P点坐标;②当PQ=PC时,由题意得:QM=t,CM=16﹣2t,进而得到方程t=16﹣2t,再解方程即可.
【解析】(1)∵b=a-21+21-a+16,
∴a=21,b=16,
故B(21,12)C(16,0);
(2)由题意得:AP=2t,QO=t,
则:PB=21﹣2t,QC=16﹣t,
∵当PB=QC时,四边形PQCB是平行四边形,
∴21﹣2t=16﹣t,
解得:t=5,
∴P(10,12)Q(5,0);
(3)当PQ=CQ时,过Q作QN⊥AB,
由题意得:122+t2=(16﹣t)2,
解得:t=72,
故P(7,12),Q(72,0),
当PQ=PC时,过P作PM⊥x轴,
由题意得:QM=t,CM=16﹣2t,
则t=16﹣2t,
解得:t=163,2t=323,
故P(323,12),Q(163,0).
专题2.4 特殊的平行四边形学习质量检测卷-2021-2022学年八年级数学下学期期中考试专题复习(人教版) (2): 这是一份专题2.4 特殊的平行四边形学习质量检测卷-2021-2022学年八年级数学下学期期中考试专题复习(人教版) (2),文件包含专题24特殊的平行四边形学习质量检测卷2021-2022学年八年级数学下学期期中考试专题复习人教版解析版docx、专题24特殊的平行四边形学习质量检测卷2021-2022学年八年级数学下学期期中考试专题复习人教版原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
专题2.2 勾股定理学习质量检测卷-2021-2022学年八年级数学下学期期中考试专题复习(人教版): 这是一份专题2.2 勾股定理学习质量检测卷-2021-2022学年八年级数学下学期期中考试专题复习(人教版),文件包含专题22勾股定理学习质量检测卷2021-2022学年八年级数学下学期期中考试专题复习人教版解析版docx、专题22勾股定理学习质量检测卷2021-2022学年八年级数学下学期期中考试专题复习人教版原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
专题2.1 二次根式学习质量检测卷-2021-2022学年八年级数学下学期期中考试专题复习(人教版): 这是一份专题2.1 二次根式学习质量检测卷-2021-2022学年八年级数学下学期期中考试专题复习(人教版),文件包含专题21二次根式学习质量检测卷2021-2022学年八年级数学下学期期中考试专题复习人教版解析版docx、专题21二次根式学习质量检测卷2021-2022学年八年级数学下学期期中考试专题复习人教版原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。