2022浙江省湖州市中考数学模拟试卷(word版含答案)
展开这是一份2022浙江省湖州市中考数学模拟试卷(word版含答案),共15页。
2022浙江省湖州市中考数学模拟试卷
一 、选择题(本大题共10小题,每小题3分,共30分。)
1.﹣3的绝对值是( )
A.3 B. C. D.﹣3
2.计算(ab2)3的结果是( )
A.3ab2 B.ab6 C.a3b5 D.a3b6
3.下列长度的三条线段,能组成三角形的是( )
A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm
4.菱形的两条对角线长分别是6和8,则此菱形的周长是( )
A.5 B.20 C.24 D.32
5.不等式组的解集为( )
A.x≤2 B.x<4 C.2≤x<4 D.x≥2
6.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )
A. B. C. D.
7.若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为( )
A.1 B.﹣3 C.3 D.4
8.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )
A. B.
C. D.
9.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )
A.盈利 B.亏损 C.不盈不亏 D.与售价a有关
10.如图,函数与函数的图象相交于点.若,则x的取值范围是( )
A.或 B.或
C.或 D.或
二 、填空题(本大题共6小题,每小题4分,共24分)
11.分解因式:3x2﹣6xy+3y2= .
12.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是 .
13.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为 .
14.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块.
15.如图①是山东舰航徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母橫空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长为____________.
16.如图,▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF= 度.
三 、解答题(本大题共8小题,共66分)
17.如图,∠1=∠2,∠3=∠4,求证:AC=AD.
18.(1)化简求值:,其中;
(2)解方程.
19.如图,“开心”农场准备用的护栏围成一块靠墙的矩形花园,设矩形花园的长为,宽为.
(1)当时,求的值;
(2)受场地条件的限制,的取值范围为,求的取值范围.
20.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m= ,n= ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知A.B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
21.某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.
(1)求雕塑高OA.
(2)求落水点C,D之间的距离.
(3)若需要在OD上的点E处竖立雕塑EF,,.问:顶部F是否会碰到水柱?请通过计算说明.
22.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.
例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==
证明:连结ED.
请根据教材提示,结合图①,写出完整的证明过程.
结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.
(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为 .
(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为 .
23.如图,在正方形ABCD中,E是边AB上的一动点(不与点A.B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.
(1)求证:GF=GC;
(2)用等式表示线段BH与AE的数量关系,并证明.
24.如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).
(1)求抛物线的解析式;
(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.
(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
答案与解析
一 、选择题
1.A
2.D
3.B
4.B
5.C
6.C
7.C
8.C
9.B
10.D
二 、填空题
11.解:3x2﹣6xy+3y2,
=3(x2﹣2xy+y2),
=3(x﹣y)2.
故答案为:3(x﹣y)2.
12.解:∵a∥b,
∴∠2=∠1+∠CAB=18°+30°=48°,
故答案为:48°
13.解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为2,高为4,
故其边心距为,
所以其表面积为2×4×6+2××6×2×=48+12,
故答案为:48+12.
14.解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:
故答案为:16
15.解:∵圆锥底面周长=侧面展开后扇形的弧长=
∴OB=,
在Rt△AOB中,AB=,
所以,该圆锥的母线长为13.
故答案为:13.
16.解:∵四边形ABCD是平行四边形,
∴AD∥BC,DC∥AB,
∵∠ADC=119°,DF⊥BC,
∴∠ADF=90°,
则∠EDH=29°,
∵BE⊥DC,
∴∠DEH=90°,
∴∠DHE=∠BHF=90°﹣29°=61°.
故答案为:61.
三 、解答题
17.证明:∵∠3=∠4,
∴∠ABC=∠ABD.
在△ABC和△ABD中
,
∴△ABC≌△ABD (ASA)
∴AC=AD.
18.解:(1)
=
=
当时,原式==;
(2),
去分母得:,
解得:,
经检验,是原方程的解.
则原方程的解为:.
19.解:(1)由题意,得,
当时,.
解得.
(2)∵,,
∴
解这个不等式组,得.
答:矩形花园宽的取值范围为.
20.解:(1)∵被调查的总人数m=10÷10%=100人,
∴支付宝的人数所占百分比n%=×100%=35%,即n=35,
故答案为:100、35;
(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,
补全图形如下:
(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;
(4)列表如下:
共有12种情况,这两位同学最认可的新生事物不一样的有10种,
所以这两位同学最认可的新生事物不一样的概率为=.
21.解:(1)由题意得,A点在图象上.
当时,
.
(2)由题意得,D点在图象上.
令,得.
解得:(不合题意,舍去).
(3)当时,,
,
∴不会碰到水柱.
22.(1)解:如图②.
∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,
∴AD∥BC,BE=BC=AD,BO=BD,
∴△BEF∽△DAF,
∴==,
∴BF=DF,
∴BF=BD,
∵BO=BD,
∴OF=OB﹣BF=BD﹣BD=BD,
∵正方形ABCD中,AB=6,
∴BD=6,
∴OF=.
故答案为,
(2)解:如图③,连接OE.
由(1)知,BF=BD,OF=BD,
∴=2.
∵△BEF与△OEF的高相同,
∴△BEF与△OEF的面积比==2,
同理,△CEG与△OEG的面积比=2,
∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,
∴△BOC的面积=,
∴▱ABCD的面积=4×=6.
故答案为6.
23.证明:(1)如图1,连接DF,
∵四边形ABCD是正方形,
∴DA=DC,∠A=∠C=90°,
∵点A关于直线DE的对称点为F,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
∵,
∴Rt△DFG≌Rt△DCG(HL),
∴GF=GC;
(2)BH=AE,理由是:
证法一:如图2,在线段AD上截取AM,使AM=AE,
∵AD=AB,
∴DM=BE,
由(1)知:∠1=∠2,∠3=∠4,
∵∠ADC=90°,
∴∠1+∠2+∠3+∠4=90°,
∴2∠2+2∠3=90°,
∴∠2+∠3=45°,
即∠EDG=45°,
∵EH⊥DE,
∴∠DEH=90°,△DEH是等腰直角三角形,
∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
∴∠1=∠BEH,
在△DME和△EBH中,
∵,
∴△DME≌△EBH,
∴EM=BH,
Rt△AEM中,∠A=90°,AM=AE,
∴EM=AE,
∴BH=AE;
证法二:如图3,过点H作HN⊥AB于N,
∴∠ENH=90°,
由方法一可知:DE=EH,∠1=∠NEH,
在△DAE和△ENH中,
∵,
∴△DAE≌△ENH,
∴AE=HN,AD=EN,
∵AD=AB,
∴AB=EN=AE+BE=BE+BN,
∴AE=BN=HN,
∴△BNH是等腰直角三角形,
∴BH=HN=AE.
24.解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,
∴
∴抛物线的解析式为:y=x2﹣x﹣2;
(2)设P(m, m2﹣m﹣2),
∵PM∥x轴,PN∥y轴,M,N在直线AD上,
∴N(m,﹣ m﹣),M(﹣m2+2m+2, m2﹣m﹣2),
∴PM+PN=﹣m2+2m+2﹣m﹣m﹣﹣m2+m+2=﹣m2+m+=﹣(m﹣)2+,
∴当m=时,PM+PN的最大值是;
(3)能,
理由:∵y=﹣x﹣交y轴于点E,
∴E(0,﹣),
∴CE=,
设P(m, m2﹣m﹣2),
∵以E,C,P,F为顶点的四边形能否构成平行四边形,
①以CE为边,∴CE∥PF,CE=PF,
∴F(m,﹣ m﹣),
∴﹣m﹣﹣m2+m+2=,
∴m=1,m=0(舍去),
②以CE为对角线,连接PF交CE于G,
∴CG=GE,PG=FG,
∴G(0,﹣),
设P(m, m2﹣m﹣2),则F(﹣m, m﹣),
∴×(m2﹣m﹣2+m﹣)=﹣,
∵△<0,
∴此方程无实数根,
综上所述,当m=1时,以E,C,P,F为顶点的四边形能否构成平行四边形.
相关试卷
这是一份2024年浙江省湖州市中考数学模拟预测练习试卷(解析版),文件包含2024年浙江省湖州市中考数学模拟预测练习试卷解析版docx、2024年浙江省湖州市中考数学模拟预测练习试卷docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份2023年浙江省湖州市安吉县中考数学模拟试卷,共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022年浙江省湖州市中考数学真题(word版含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。