专题训练3:整式-2022年中考数学一轮复习知识点课标要求
展开2022年中考数学一轮复习知识点课标要求专题训练3:整式(含答案)
一、知识要点:
(1)单项式:用数或字母的乘积表示的式子叫做单项式。单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(2)多项式:几个单项式的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。多项式里,次数最高项的次数,叫做这个多项式的次数。
单项式与多项式统称整式。
(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
(4)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、整式的运算
(1)整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。
去括号法则:同号得正,异号得负。即括号外的因数的符号决定了括号内的符号是否改变:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)整式的乘除运算
①同底数幂的乘法:am·an=am+n。同底数幂相乘,底数不变,指数相加。
②幂的乘方:(am)n=amn。幂的乘方,底数不变,指数相乘。
③积的乘方:(ab)n=anbn。积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
④单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
⑤单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
⑥多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:(a+b)(a-b)=a2-b2。两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫做平方差公式。
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。这两个公式叫做完全平方公式。
⑦同底数幂的除法:am÷an=am-n。同底数幂相除,底数不变,指数相减。
任何不等于0的数的0次幂都等于1。
⑧单项式与单项式的除法:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
⑨多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
注:以上公式及法则在分式和二次根式的运算中同样适用。
(3)添括号法则
同号得正,异号得负。即括号前的符号决定了括号内各项的符号是否改变:
如果括号前面是正号,括到括号里的各项都不变符号;
如果括号前面是负号,括到括号里的各项都改变符号。
二、课标要求:
1、了解整数指数幂的意义和基本性质。
2、理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。
3、能推导乘法公式:(a+b)( a- b) = a2- b2;(a±b)2 = a 2±2ab + b 2,了解公式的几何背景,并能利用公式进行简单计算。
三、常见考点:
1、考查学生对基本概念的认识及运用,如列代数式、求系数和次数、同类项等。
2、基本公式(同底数幂的乘除法、幂的乘方、积的乘方)的应用。
3、运用整式乘除法公式、整式加减运算法则、整式乘法运算特殊公式进行计算。
4、相关知识的综合应用,如找规律,定义新运算等。
四、专题训练:
1.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?( )
A.﹣4 B.﹣2 C.0 D.4
2.下列计算正确的是( )
A.a2•a3=a6 B.(x+y)2=x2+y2
C.(a5÷a2)2=a6 D.(﹣3xy)2=9xy2
3.某商场四月份售出某品牌衬衣b件,每件c元,营业额a元.五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加( )
A.1.4a元 B.2.4a元 C.3.4a元 D.4.4a元
4.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是( )
A.4 B.3 C.2 D.1
5.若与﹣3ab3﹣n的和为单项式,则m+n= .
6.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:
第一步,A同学拿出二张扑克牌给B同学;
第二步,C同学拿出三张扑克牌给B同学;
第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.
请你确定,最终B同学手中剩余的扑克牌的张数为 .
7.若mn=m+3,则2mn+3m﹣5mn+10= .
8.若23n+1•22n﹣1=,则n= .
9.计算(﹣2)2017×(﹣)2018= .
10.已知am=3,an=2,则a2m﹣n的值为 .
11.若(am+1bn+2)•(a2n﹣1b2n)=a5b3,则m+n的值为 .
12.已知ab=a+b+1,则(a﹣1)(b﹣1)= .
13.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.
14.已知:a(a﹣1)﹣(a2﹣b)=8,求﹣ab的值.
15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.
例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;
…
根据以上规律,解答下列问题:
(1)(a+b)4展开式共有 项,系数分别为 ;
(2)(a+b)n展开式共有 项,系数和为 .
16.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:
小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,
对于方案一,小明是这样验证的:
a2+ab+ab+b2=a2+2ab+b2=(a+b)2
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三:
17.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的式子表示S1和S2;
(2)请写出上述过程所揭示的乘法公式.
参考答案
1.解:∵2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,
∴2x3﹣ax2﹣5x+5=2x3+(a﹣2b)x2﹣(ab+1)x+b+3,
∴﹣a=a﹣2b,ab+1=5,b+3=5,
解得b=2,a=2,
∴a+b=2+2=4.
故选:D.
2.解:A、a2•a3=a5,故选项错误;
B、(x+y)2=x2+y2+2xy,故选项错误;
C、(a5÷a2)2=a6,故选项正确;
D、(﹣3xy)2=9x2y2,故选项错误;
故选:C.
3.解:5月份营业额为3b×c=,
4月份营业额为bc=a,
∴a﹣a=1.4a.
故选:A.
4.解:法一:a2+b2+c2﹣ab﹣bc﹣ac,
=a(a﹣b)+b(b﹣c)+c(c﹣a),
又由a=x+20,b=x+19,c=x+21,
得(a﹣b)=x+20﹣x﹣19=1,
同理得:(b﹣c)=﹣2,(c﹣a)=1,
所以原式=a﹣2b+c=x+20﹣2(x+19)+x+21=3.
故选B.
5.解:∵与﹣3ab3﹣n的和为单项式,
∴2m﹣5=1,n+1=3﹣n,
解得:m=3,n=1.
故m+n=4.
故答案为:4.
6.解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,
则B同学有(x+2+3)张牌,
A同学有(x﹣2)张牌,
那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x﹣2)=x+5﹣x+2=7.
故答案为:7.
7.解:原式=﹣3mn+3m+10,
把mn=m+3代入得:原式=﹣3m﹣9+3m+10=1,
故答案为:1
8.解:23n+1•22n﹣1=,
25n=2﹣5,
则5n=﹣5,
故n=﹣1,
故答案为:﹣1.
9.解:原式=(﹣)2017×(﹣)2017×(﹣)
=[(﹣)×(﹣)]2017×(﹣)
=12017×(﹣)
=1×(﹣)
=﹣,
故答案为:﹣.
10.解:∵am=3,
∴a2m=32=9,
∴a2m﹣n===4.5.
故答案为:4.5.
11.解:已知等式整理得:am+2nb3n+2=a5b3,
可得,
解得:m=,n=,
则m+n=,
故答案为:
12.解:当ab=a+b+1时,
原式=ab﹣a﹣b+1
=a+b+1﹣a﹣b+1
=2,
故答案为:2.
13.解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]
=3x2﹣6xy﹣(3x2+2xy)
=3x2﹣6xy﹣3x2﹣2xy
=﹣8xy
当时
原式=﹣8×(﹣)×(﹣3)=﹣12.
14.解:∵a(a﹣1)﹣(a2﹣b)=8,
∴a2﹣a﹣a2+b=8,
∴b﹣a=8,
∴﹣ab===32.
15.解:(1)根据题意知,(a+b)4的展开后,共有5项,
各项系数分别为1、(1+3)、(3+3)、(3+1)、1,
即:1、4、6、4、1;
(2)当a=b=1时,(a+b)n=2n.
故答案为:(1)5,1,4,6,4,1;(2)n+1,2n.
16.解:由题意可得,
方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,
方案三:a2+==a2+2ab+b2=(a+b)2.
17.解:(1)∵大正方形的边长为a,小正方形的边长为b,
∴S1=a2﹣b2.
S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);
(2)根据题意得:
(a+b)(a﹣b)=a2﹣b2.