考点24-2 图形的翻折-2022年中考数学专项分类提分训练(天津专用)
展开考点24—2图形的翻折
1.如图1,在平面直角坐标系中有长方形OABC,点,将长方形OABC沿AC折叠,使得点B落在点D处,CD边交x轴于点E,.
(1)求点D的坐标;
(2)如图2,在直线AC以及y轴上是否分别存在点M,N,使得△EMN的周长最小?如果存在,求出△EMN周长的最小值;如果不存在,请说明理由;
(3)点P为y轴上一动点,作直线AP交直线CD于点Q,是否存在点P使得△CPQ为等腰三角形?如果存在,请求出∠OAP的度数;如果不存在,请说明理由.
2.等边的边长为,是边上任一点(与不重合),连接,以为边向两侧作等边和等边,分别与边交于点(如图1)
(1)求证:;
(2)若,求四边形与重叠部分的面积;
(3)连接,分别与边交于点(如图2),当时,求的长,判断此时以这三条线段为边构成的三角形是什么特殊三角形,并说明理由.
3.在矩形ABCD中,将矩形折叠,使点B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于点F(如图1和图2),然后展开铺平,连接BE,EF.
(1)操作发现:
①在矩形ABCD中,任意折叠所得的△BEF是一个 三角形;
②当折痕经过点A时,BE与AE的数量关系为 .
(2)深入探究:
在矩形ABCD中,AB=,BC=2.
①当△BEF是等边三角形时,求出BF的长;
②△BEF的面积是否存在最大值,若存在,求出此时EF的长;若不存在,请说明理由.
4.将长方形纸片,按下列要求折叠.并回答问题1,2,3;
(折叠一)
第1步:将长方形纸片,按图1所示的方法折叠;
第2步:按图2所示的方法折叠;
第3步:将图形展开,如图3,在长方形ABCD中,EF,GD为折叠过程中产生的折痕
问题1:EF与GD平行?请说明理由.
(折叠二)
第1步:将长方形纸片,按图4所示的方法折叠;
第2步:按图5所示的方法折叠;
第3步:将图形展开,如图6,将长方形ABCD中,EF,GH为折叠过程中产生的折痕.
问题2:EF与GH平行吗?请说明理由.
问题3:如图7,在(折叠二)中,若纸片的长为16厘米,宽为2厘米,则阴影部分面积的最大值为________.
5.(教材呈现)下图是华师版八年级下册数学教材第121页的部分内容.
(问题解决)(1)如图①,已知矩形纸片,将矩形纸片沿过点的直线折叠,使点落在边上,点的对应点为,折痕为,点在上.求证:四边形是正方形.
(规律探索)(2)由(问题解决)可知,图①中的为等腰三角形.现将图①中的点沿向右平移至点处(点在点的左侧),如图②,折痕为,点在上,点在上,那么还是等腰三角形吗?请说明理由.
(结论应用)(3)在图②中,当时,将矩形纸片继续折叠如图③,使点与点重合,折痕为,点在上.要使四边形为菱形,则___________.
6.如图,在矩形中,,点是边上的一个动点,将四边形沿直线折叠,得到四边形,点、的对应点分别为点、.直线交于点.
(1)求证:;
(2)连接,已知.
①如图①,当,时,求的长度;
②如图②,当四边形为菱形时,请直接写出的长度.
图① 图②
7.如图,在矩形ABCD中,AB=10,BC=m,E为BC边上一点,沿AE翻折△ABE,点B落在点F处.
(1)连接CF,若CF//AE,求EC的长(用含m的代数式表示);
(2)若EC=,当点F落在矩形ABCD的边上时,求m的值;
(3)连接DF,在BC边上是否存在两个不同位置的点E,使得?若存在,直接写出m的取值范围;若不存在,说明理由.
8.如图,在平面直角坐标系中,矩形的顶点O与坐标原点重合,顶点A、C在坐标轴上,,将矩形沿折叠,使点A与点C重合.
(1)求点E的坐标;
(2)点P从O出发,沿折线方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设P的运动时间为t,的面积为S,求S与t的关系式,直接写出t的取值范围;
(3)在(2)的条件下,当时,在平面直角坐标系中是否存在点Q,使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.
9.(1)、动手操作:
如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .
(2)、观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(3)、实践与运用:
将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.
10.如图,在矩形中,点是上的一点(不与点,重合),沿折叠,得,点的对称点为点.
(1)当时,点会落在上吗?请说明理由.
(2)设,且点恰好落在上.
①求证:.
②若,用等式表示的关系.
11.如图,在矩形中,,点E是边上的动点,将矩形沿折叠,点A落在点处,连接.
(1)如图,求证:;
(2)如图,若点恰好落在上,求的值;
(3)点E在边上运动的过程中,的度数是否存在最大值,若存在,求出此时线段的长;若不存在,请说明理由.
12.如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.
(1)求矩形ABCD的边AD的长.
(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.
(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;
②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式
13.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF,将纸片ACB的一角沿EF折叠.
(1)如图①,若折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△AEF,则AE= ;
(2)如图②,若折叠后点A落在BC边上的点M处,且使MF∥CA.求AE的长;
(3)如图③,若折叠后点A落在BC延长线上的点N处,且使NF⊥AB.求AE的长.
14.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)
(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;
(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;
(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.
①请写出C、D两点的坐标;
②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.
15.实践操作:在矩形ABCD中,AB=4,AD=3,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.
初步思考:
(1)若点P落在矩形ABCD的边AB上(如图①)
①当点P与点A重合时,∠DEF= °;当点E与点A重合时,∠DEF= °;
②当点E在AB上,点F在DC上时(如图②),
求证:四边形DEPF为菱形,并直接写出当AP=3.5时的菱形EPFD的边长.
深入探究
(2)若点P落在矩形ABCD的内部(如图③),且点E、F分别在AD、DC边上,请直接写出AP的最小值 .
拓展延伸
(3)若点F与点C重合,点E在AD上,线段BA与线段FP交于点M(如图④).在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.
16.如图1,已知的边平行于轴,点的坐标为,点的坐标为,点在第四象限,点是边上的一个动点.
(1)若点在边上,求点的坐标;
(2)若点在边或上,点是与轴的交点如图2,过点作轴的平行线过点作轴的平行线它们相交于点,将沿直线翻折,当点的对应点落在坐标轴上时,求点的坐标.(直接写出答案)
17.在中,,点是边的中点,动点在边上(点不与点重合),连接,将沿直线翻折,点落在点处得.
(1)如图①,若点恰好与点重合,求线段的长;
(2)如图②,若交于点,四边形为菱形,求证:;
(3)连接与重叠部分的面积为的面积为,若时,请直接写出的值.
18.再读教材:宽与长的比是(约为0.618)的矩形叫作黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2的矩形纸片折叠黄金矩形(提示:).
第一步:在矩形纸片一端 ,利用图1的方法折出一个正方形,然后把纸片展平;
第二步:如图2,把这个正方形折成两个相等的矩形,再把纸片展平;
图1 图2
第三步:折出内侧矩形的对角线,并把折到图3中所示的处;
第四步:展平纸片,按照所得的点折出,使,则图4中就会出现黄金矩形.
图3 图4
(1)在图3中_________ (保留根号);
(2)如图3,则四边形的形状是_________;
(3)在图4中黄金矩形是_________.
19.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.
(1)求证:△AED≌△CEB′
(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.
20.取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图1;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B',得Rt△AB'E,如图2;第三步:沿EB'线折叠得折痕EF,使A点落在EC的延长线上,如图3.
利用展开图4探究:
(1)△AEF是什么三角形?证明你的结论;
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
21.如图,矩形纸片ABCD中,AB=,BC=.某课题小组利用这张矩形纸片依次进行如下操作(每次折叠后均展开).
如图①,第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1,设O1D的中点为D1;
如图②,第二次将纸片折叠,使点B与点D1重合,折痕与BD交于点O2,设O2D3的中点为D2;
如图③,第三次将纸片折叠,使点B与点D2重合,折痕与BD交于点O3,设O3D2的中点为D3;
…
根据以上操作结果,回答下列问题:
(1)如图①,MN是折痕,求证:△DA′M≌△DCN;
(2)分别求出线段BO1、BO2、BO3的长,并直接写出第n次折叠后BOn的长(用含n的式子表示);
(3)如图②,第二次折叠时,折痕一定会经过点A吗?请通过计算判断.
22.如图,在平面直角坐标系中,矩形OABC的顶点O是坐标原点,OA、OC分别在x轴、y轴的正半轴上,且OA=5,OC=4.
(1)如图①,将矩形沿对角线OB折叠,使得点A落在点D处,OD与CB相交于点E,请问重叠部分△OBE是什么三角形?说明你的理由:并求出这个三角形的面积;
(2)如图②,点E、F分别是OC、OA边上的点,将△OEF沿EF折叠,使得点O正好落在BC边上的D点,过点D作DH⊥OA,交EF于点G,交OA于点H,若CD=2,求点G的坐标;
(3)如图③,照(2)中条件,当点E、F在OC、OA上移动时,点D也在边BC上随之移动,请直接写出BD的取值范围.
23.如图1,在矩形纸片ABCD中,AB=12cm,AD=20cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
24.如图,四边形是一张矩形纸片,,把纸片对折,折痕为,展开后再过点折叠该纸片,使点落在上的点处,且折痕与相交于点,再次展平后,连接,,并延长交于点.
(1)求证:是等边三角形;
(2)求,的长;
(3)为线段上一动点,是的中点,则的最小值是 .(请直接写出结果)
25.对一张矩形纸片进行折叠,具体操作如下:
第一步:先对折,使与重合,得到折痕,展开;
第二步:再一次折叠,使点落在上的点处,并使折痕经过点,得到折痕,同时,得到线段,,展开,如图①;
第三步:再沿所在的直线折叠,点落在上的点处,得到折痕,同时得到线段,展开,如图②.
(1)求证:
(2)求证:四边形为菱形.
26.如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.
(1)若直线DA交BC′于点F,求证:EF=BF;
(2)当AE=时,求证:△AC′D′是等腰三角形;
(3)在点E的运动过程中,求△AC′D′面积的最小值.
27.如图①,在矩形纸片ABCD中,AB=4,AD=6.点E,F分别在AB,DC上(E不与A,D重合,F不与B,C重合),现以EF为折痕,将矩形纸片ABCD折叠.
(1)当A点落在BC上时(如图②),求证:△EFA′是等腰三角形;
(2)当A′点与C重合时,试求△EFA’的面积;
(3)当A′点与DC的中点重合时,试求折痕EF的长.
28.已知长方形中,,点在边上,由往运动,速度为,运动时间为秒,将沿着翻折至,点对应点为,所在直线与边交于点,
(1)如图,当时,求证:;
(2)如图,当为何值时,点恰好落在边上;
(3)如图,当时,求的长.
29.如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F. ①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=S△COF?若存在,求出点P的坐标;若不存在,请说明理由.
30.(问题情境)如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小丽给出的提示是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
请根据小丽的提示进行证明.
(变式探究)如图③,当点P在BC延长线上时,其余条件不变,试猜想PD、PE、CF三者之间的数量关系并证明.
(结论运用)如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值.
考点22-1 俯仰角-2022年中考数学专项分类提分训练(天津专用): 这是一份考点22-1 俯仰角-2022年中考数学专项分类提分训练(天津专用),文件包含考点22-1俯仰角解析版doc、考点22-1俯仰角原卷版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
考点20 统计概率-2022年中考数学专项分类提分训练(天津专用): 这是一份考点20 统计概率-2022年中考数学专项分类提分训练(天津专用),文件包含考点20统计概率解析版doc、考点20统计概率原卷版doc等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
考点18 网格作图-2022年中考数学专项分类提分训练(天津专用): 这是一份考点18 网格作图-2022年中考数学专项分类提分训练(天津专用),文件包含考点18网格作图解析版docx、考点18网格作图原卷版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。