所属成套资源:2022届人教版九年级《新题速递 数学》
考点02 中考常考题型-圆(提高)-2022届九年级《新题速递 数学》(人教版)
展开
这是一份考点02 中考常考题型-圆(提高)-2022届九年级《新题速递 数学》(人教版),文件包含考点02中考常考题型-圆提高解析版docx、考点02中考常考题型-圆提高原卷版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
考点02 中考常考题型——圆(提高) 一、单选题(共15小题)1.(2021•赤峰一模)⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是( )A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.点P在⊙O上或外2.(2021•新田县三模)将一把直尺,含有60°的直角三角板和光盘如图摆放,已知点A为60°角与直尺交点,AB=2,则光盘的直径是( )A.2 B.2 C.4 D.43.(2021•乐清市一模)如图,在直角坐标系中,正方形ABCD的顶点坐标分别为A(1,﹣1),B(﹣1,﹣1),C(﹣1,1),D(1,1).曲线AA1A2A3…叫做“正方形的渐开线”,其中AA1、A1A2、A2A3、A3A4…的圆心依次是B、C、D、A循环,则点A18的坐标是( )A.(﹣35,1) B.(﹣37,1) C.(39,﹣1) D.(﹣37,﹣1)4.(2021•秦安县模拟)已知⊙O1与⊙O2交于A、B两点,且⊙O2经过⊙O1的圆心O1点,点C在⊙O1上.如图所示,∠AO2B=80°,则∠ACB=( )A.100° B.40° C.80° D.70°5.(2021•广阳区一模)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为( )A. B. C. D.6.(2021•罗湖区二模)如图菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O顺时针方向旋转90°,则图中阴影部分的面积是( )A. B.﹣ C.﹣ D.﹣17.(2021•江汉区模拟)如图,在矩形ABCD中,AB=4,AD=8,点E、点F分别在边AD,BC上,且EF⊥AD,点B关于EF的对称点为G点,连接EG,若EG与以CD为直径的⊙O恰好相切于点M,则AE的长度为( )A.3 B. C.6+ D.6﹣8.(2021•南沙区一模)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,OC=3,则EC的长为( )A. B.8 C. D.9.(2021•武昌区校级模拟)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AD=DC,分别延长BA、CD,交点为E,作BF⊥EC,并与EC的延长线交于点F.若AE=AO,BC=6,则CF的长为( )A. B. C. D.10.(2021•沙坪坝区校级模拟)如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB=4,F为BC的中点,则图中阴影部分的面积为( )A. B. C. D.11.(2021•邹平县模拟)如图,在△ABC中,∠B=90°,AC=10,作△ABC的内切圆O,分别与AB、BC、AC相切于点D、E、F,设AD=x,△ABC的面积为S,则S关于x的函数图象大致为( )A. B. C. D.12.(2021•海港区模拟)已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;………在这样连续6次旋转的过程中,点M在图中直角坐标系中的纵坐标可能是( )A. B.﹣2.2 C.2.3 D.﹣2.313.(2021•武汉模拟)如图,点D在半圆O上,半径OB=,AD=10,点C在弧BD上移动,连接AC,H是MC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是( )A.5 B.6 C.7 D.814.(2021•昆明模拟)如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为;②∠AOD=∠BCP;③PB=;④tan∠CEP=.其中正确结论有( )A.1个 B.2个 C.3个 D.4个 15.(2021•铁西区三模)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是线段AB上的一点,连结CD.过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF,给出以下四个结论:①;②若AF=AB,则点D是AB的中点;③若=1,则S△ABC=9S△BDF;④当B、C、F、D四点在同一个圆上时,DF=DB;其中正确的结论序号是( )A.①② B.①②④ C.①②③ D.①②③④ 二、填空题(共9小题)16.(2021•通州区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是 .17.(2021•重庆模拟)如图,在正方形ABCD中,已知正方形的边长为2,以AD、BC的中点为圆心,边长的一半为半径画弧,图中阴影部分的面积是 ﹣ (结果保留π).18.(2021•南海区一模)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为 ﹣ .19.(2021•平阳县一模)婷婷在发现一个门环的示意图如图所示.图中以正六边形ABCDEF的对角线AC的中点O为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=12cm,则该圆的半径为 cm.20.(2021•新吴区二模)如图,边长为4的正方形ABCD内接于⊙O,点E是上的一个动点(不与A、B重合),点F是上的一点,连接OE、OF,分別与AB、BC交于点G、H,且∠EOF=90°,有下列结论:①=②△OGH是等腰直角二角形;③四边形OGBH的面积不随点E位置的变化而变化;④△GBH周长的最小值为4﹣.其中错误的是 .(把你认为错误结论的序号填上)21.(2021•武汉模拟)如图,在矩形ABCD中,,点P是BC边上的一动点(不与B,C重合),PQ⊥AP交边CD于点Q,若CQ的最大值为,则AD的长为 .22.(2021•锦江区模拟)如图,四边形ABCD内接于以AC为直径的⊙O,AD=,CD=2,BC=BA,AC与BD相交于点F,将△ABF沿AB翻折,得到△ABG,连接CG交AB于E,则BE长为 . 23.(2021•温州一模)如图,在矩形ABCD中,AB=16,AD=9,线段PQ位于边AB上(AP<AQ),PQ=2,E为PQ中点,以E为顶点在矩形内作直角△EFG,其中∠EFG=90°,EF=1,sin∠FEQ═,当GF所在的直线与以CD为直径的圆相切时,AP的长度为 . 24.(2021•坪山区模拟)如图,D为△ABC的内心,点E在AC上,且AD⊥DE,若DE=2,AD=CE=3,则AB的长为 . 三、解答题(共11小题)25.(2021•梧州二模)如图,在△ABF中,以AB为直径的作⊙O,∠BAF的平分线AD交⊙O于点D,AF与⊙O交于点E,过点B的切线交AF的延长线于点C(1)求证:∠FBC=∠FAD;(2)若,求的值. 26.(2021•常德模拟)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长. 27.(2021•永昌县一模)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.28.(2021•河南模拟)如图,在Rt△ABC中,∠ACB=90°,以直角边BC为直径作⊙O、交AB于点D,E为AC的中点,连接DE(1)求证:DE为⊙O的切线;(2)已知BC=4.填空.①当DE= 时,四边形DOCE为正方形;②当DE= 时,△BOD为等边三角形. 29.(2021•宜兴市二模)如图,矩形AOBC,A(0,3)、B(6,0),点E在OB上,∠AEO=30°,点P从点Q(﹣4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.(1)求点E的坐标;(2)当△PAE是等腰三角形时,求t的值;(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC的边(或边所在的直线)相切时,求t的值. 30.(2021•云南模拟)如图,AB是⊙O的直径,AF是⊙O的切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线. 31.(2021•英德市一模)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求的长度;(3)若DE=4,AE=8,求线段EG的长. 32.(2021•都江堰市模拟)如图,在△ABC中,已知AB=AC=5,sinB=,点P为BC边上一动点,过点P作射线PE,交射线BA于点D,∠BPD=∠BAC,以点P为圆心,PC长为半径作⊙P交射线PD于点E,连接CE.(1)当⊙P与AB相切时,⊙P的半径为 (2)当点D在BA的延长线上,且BD=n(5<n<)时,求线段CE的长(用含n的代数式表示);(3)如果⊙O经过B、C、E三点且OP=,请直接写出线段AD的长. 33.(2021•山西模拟)如图,以AB为直径的⊙O与BC相切于点B,与AC相交于点D.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母.(保留作图痕迹,不写作法)①作∠BAC的平分线AE,交⊙O于点E;②连接BE并延长交AC于点F.探索与发现:(2)试猜想AF与AB有怎样的数量关系,并证明;(3)若AB=10,sin∠FBC=,求BF的长. 34.(2021•临清市一模)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若=,AD=4,求CE的长. 35.(2021•清江浦区一模)问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为 .(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.
相关试卷
这是一份考点06 中考常考题型-相似图形(提高)-2022届九年级《新题速递 数学》(人教版),文件包含考点06中考常考题型-相似图形提高解析版docx、考点06中考常考题型-相似图形提高原卷版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份考点07 圆基础题-2022届九年级《新题速递 数学》(人教版),文件包含考点07圆基础题解析版docx、考点07圆基础题原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份考点06 圆-2022届九年级《新题速递·数学》(人教版),文件包含考点06圆解析版docx、考点06圆原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。