搜索
    上传资料 赚现金
    英语朗读宝

    专题09 平行四边形在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题09 平行四边形在二次函数中的综合问题(原卷版).docx
    • 解析
      专题09 平行四边形在二次函数中的综合问题(解析版).docx
    专题09 平行四边形在二次函数中的综合问题(原卷版)第1页
    专题09 平行四边形在二次函数中的综合问题(原卷版)第2页
    专题09 平行四边形在二次函数中的综合问题(原卷版)第3页
    专题09 平行四边形在二次函数中的综合问题(解析版)第1页
    专题09 平行四边形在二次函数中的综合问题(解析版)第2页
    专题09 平行四边形在二次函数中的综合问题(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题09 平行四边形在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版)

    展开

    这是一份专题09 平行四边形在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题09平行四边形在二次函数中的综合问题解析版docx、专题09平行四边形在二次函数中的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    (1)分别求出直线AB和这条抛物线的解析式.
    (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
    (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
    2、如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).
    (1)求抛物线的函数解析式,并写出顶点D的坐标;
    (2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;
    (3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.
    3、如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).
    (1)求抛物线的解析式和直线AD的解析式;
    (2)过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
    4、如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=﹣421x2+1621x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.
    (1)求A、B两点的坐标及直线l的函数表达式.
    (2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.
    (3)如图2,连接AC,CB,将△ACD沿x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).
    5、如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.
    (1)试求、的值,并写出该二次函数表达式;
    (2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:
    ①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?
    ②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?
    6、如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
    (1)求抛物线的解析式;
    (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;
    (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四边形为平行四边形(要求PQ∥OB),直接写出相应的点Q的坐标.
    7、如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).
    (1)求抛物线与直线AC的函数解析式;
    (2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;
    (3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.
    8、如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
    (1)求A、B两点的坐标及直线AC的函数表达式;
    (2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
    (3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的F点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.
    9、如图,已知二次函数y=ax2-2a-34x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0

    相关试卷

    专题24 二次函数中的圆的综合问题-2021-2022学年九年级数学上册难点突破(人教版):

    这是一份专题24 二次函数中的圆的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题24二次函数中的圆的综合问题解析版docx、专题24二次函数中的圆的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    专题21 圆性质在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版):

    这是一份专题21 圆性质在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题21圆性质在二次函数中的综合问题解析版docx、专题21圆性质在二次函数中的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    专题22 圆位置关系在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版):

    这是一份专题22 圆位置关系在二次函数中的综合问题-2021-2022学年九年级数学上册难点突破(人教版),文件包含专题22圆位置关系在二次函数中的综合问题解析版docx、专题22圆位置关系在二次函数中的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map