苏教版 六年级数学下册【拓展篇】期中复习应用部分拓展篇(原卷版+解析版)
展开六年级数学下册典型例题系列之
期中复习应用部分拓展篇(解析版)
编者的话:
《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是期中复习应用部分拓展篇。本部分内容是第一单元至第四单元应用部分的拓展,内容偏于思维拓展,难度较大,建议根据学生掌握情况选择性进行讲解,一共划分为十一个考点,欢迎使用。
【考点一】求不规则圆柱体的表面积。
【方法点拨】
求不规则圆柱体的表面积,注意分析图形是由哪几个面组合而成的,然后分别计算这几个面的面积,最后将所计算的面相加。
【典型例题1】
如图,一根长2米,底面周长为12.56分米的圆木,沿着它的两条半径,截去部分,该图形的表面积是多少平方分米?
解析:
2米=20分米
底面半径:12.56÷3.14÷2=2(分米)
圆柱两个底面积之和:3.14×22×2=25.12(平方分米)
圆柱侧面积:12.56×20=251.2(平方分米)
截去后的表面积:(25.12+251.2)×(1-)=207.24(dm2)
207.24+2×20×2=287.24(平方分米)
答:该图形的表面积是287.24平方分米。
【典型例题2】
如图,卫生纸的高度是10cm,中间硬纸轴的直径是4 cm,制作100个这样的硬纸轴,至少需要多少平方米的硬纸皮?
解析:
3.14×4=12.56(厘米),长方形的宽是圆柱的高,本题中是10厘米,长方形的面积就等于圆柱侧面积,列式为:3.14×4×10=125.6(平方厘米),100个这样的硬纸轴用纸125.6×100=12560(平方厘米) 12560平方厘米=1.256平方米
【考点二】求组合立体图形的表面积。
【方法点拨】
求组合立体图形的表面积,注意分析图形是由些图形组合而成的,组成该图形的表面有哪些,是什么形状,然后分别计算这几个面的面积,最后将所计算的面相加。
【典型例题】
如图,一个物体由三个圆柱组成,它们的半径分别为0.5分米,2分米,5分米,而高都是2分米,则这个物体的表面积是多少平方分米?
解析:
大圆柱的表面积:3.14×52×2+2×3.14×5×2
=157+62.8
=219.8(平方分米)
中圆柱侧面积:2×3.14×2×2=25.12(平方分米)
小圆柱侧面积:2×3.14×0.5×2=6.28(平方分米)
这个物体的表面积:219.8+25.12+6.28=251.2(平方分米)
答:这个物体的表面积是251.2平方分米。
【考点三】圆柱表面积的三种增减变化方式在体积中的应用。
【方法点拨】
1.圆柱高的变化引起表面积的变化:
由于底面积没有变,所以实际上发生变化的是侧面积,由此可以求出底面周长,进而求出表面积,即底面周长C=变化的表面积÷变化的高度。
2.横切引起的表面积变化。
平行于底面切(横切)一刀,多出的两个面是底面,即两个圆。
3.竖切引起的表面积变化。
垂直于底面切(竖切),多出的两个面是长方形,即以底面圆的直径为长,以圆柱的高为宽的长方形。
【典型例题1】
一个圆柱,如果把它的高截短3m,它的表面积就会减少,那么这个圆柱的体积减少多少立方米?
解析:
;
答:这个圆柱的体积减少235.5立方米。
【典型例题2】
把一根长4米的圆柱形钢材截成两段,表面积比原来增加15.7平方厘米。这根钢材的体积是多少立方厘米?
解析:
4米=400厘米
15.7÷2×400=3140(立方厘米)
答:这根钢材的体积是3140立方厘米。
【考点四】不规则圆柱体的等积转化问题。
【方法点拨】
等积转化问题,关键在于找到题目中的体积不变量,再根据体积不变解决问题。
【典型例题1】
小军有一个密封的瓶子(图A)。里面装了250毫升的果汁,如果把它倒过来(图B),空白部分的容量是50毫升假如把瓶里装满果汁,那么一共能装多少毫升?
解析:
250+50=300(毫升)
答:一共能装300毫升。
【考点五】求长方体削成最大圆柱体的体积。
【方法点拨】
在长a厘米,宽b厘米,高c厘米的长方体中切出一个体积最大的圆柱,求这个圆柱的体积是多少立方厘米,要以中间长度的边作为圆柱底面圆的直径,再根据情况选择圆柱的高来计算圆柱的体积。
【典型例题】
在一个长、宽、高分别是2dm、2dm、5dm的长方体盒子中,正好能放下一个圆柱形物体(如图)。这个圆柱形物体的体积最大是多少立方分米?盒子中空余的空间是多少立方分米?
解析:
3.14×(2÷2)2×5
=3.14×1×5
=15.7(立方分米)
2×2×5-15.7
=20-15.7
=4.3(立方分米)
答:这个圆柱形物体的体积最大是15.7立方分米,盒子空余的空间是4.3立方分米。
【考点六】圆锥的切面积问题。
【方法点拨】
将圆锥沿着高并垂直于底面切成完全相同的两块,每一块的切面都是一个等腰三角形,而且这个三角形的底是底面圆的直径,高是圆锥的高,相比较圆锥的表面积,增加了两个这样的切面。
【典型例题1】
一个圆锥的底面半径2厘米,高是7厘米,沿着高并垂直于底面将圆锥切成完全相同的两块,每个切面的面积是多少平方厘米?
解析:沿着高并垂直于底面将圆锥切成完全相同的两块,每一块的切面都是一个等腰三角形,而且这个三角形的底是直径,高是圆锥的高,也就是说底是4厘米,高是7厘米,所以每个切面的面积是14平方厘米。
【典型例题2】
把一个底面直径是10cm的圆锥沿着高切开后,表面积增加了60cm2,这个圆锥的体积是多少cm3?
解析:
60÷2×2÷10=6(厘米)
3.14×(10÷2)²×6÷3
=3.14×25×2
=157(立方厘米)
【考点七】圆锥中的倒水问题。
【方法点拨】
圆锥中的倒水问题
圆锥中倒入部分水,水的形状也是圆锥,当水的高度和原来圆锥的高度之比是m∶n时,水形成的圆锥和原来的圆锥的底面半径之比也是m∶n,那么底面积的比就是m2;n2,此时体积之比就是m3:n3。
【典型例题】
如图,圆锥形容器中装有水40升,水面高度是这个容器的一半,这个容器最多能装水多少升?
解析:
水与圆锥高之比为1:2,所以,体积之比为1:8。
40×8=320(升)
【对应练习】
如图,圆锥形容器中装有水50升,水面高度是这个容器的一半,这个容器最多能装水多少升?
解析:400升。
时)。
【考点八】比例与单量不变问题。
【方法点拨】
单量不变问题,即其它量发生变化时,单一量的值不发生改变,该类题型要以一份量为未知数,根据题目关系建立方程。
【典型例题】
小胖和大胖一起吃冰淇淋,本来小胖和大胖吃的个数比为2∶3,后来大胖又吃了24个,现在小胖和大胖吃的个数之比为10∶27,求小胖吃了多少个冰淇淋?
解析:
解:设小胖原来吃了2x个,大胖原来吃了3x个。
2x:(3x+24)=10:27
x=10
小胖:2×10=20(个)
答:略。
【对应练习】
小胖和大胖一起吃草莓,本来小胖和大胖吃的个数比为3:4,后来大胖又吃了10个,现在小胖和大胖吃的个数之比为4:7,求小胖吃了多少个草莓?
解析:24个。
【考点九】比例与和不变问题。
【方法点拨】
和不变问题,即在两个单量都发生变化的时候,这两个量的和不发生变化(即和是定值)。
【典型例题】
大宝和小宝一起吃饺子,本来大宝碗里的和小宝碗里的个数之比为2:3,后来大宝想要减肥,又夹了10个饺子到小宝碗里,此时大小宝碗里饺子之比为3:7,求两人一共有多少个饺子?
解析:
解:设原来大宝和小宝碗里各有2x个,3x个。
(2x-10):(3x+10)=3:7
x=20
一共:20×5=100(个)
答:略。
【对应练习】
大宝和小宝一起喝汤圆,本来大宝碗里的和小宝碗里的个数之比为2∶3,后来大宝想要减肥,又夹了4个汤圆到小宝碗里,此时大小宝碗里汤圆之比为1∶2,求两人一共有多少个汤圆?
解析:60个。
【考点十】比例与差不变问题。
【方法点拨】
1.差不变问题,即在两个单量变化的时候,这两个量的差不发生变化,常见的差不变问题是同增同减差不变,例如年龄问题。
2.方程法解决比例问题:
方程法能解决大部分的比例问题.通常设一份量为x,从而表示出变比的过程,通过列比例方程,最终解决比例问题。
【典型例题】
小牛和大牛吃肥肉,原来小牛和大牛吃的肉块数之比为2∶5,后来小牛又吃了5块,大牛也又吃了2块,此时小牛和大牛吃的肉块数之比为5∶9,求原来两人各自吃了多少块肥肉?
解析:
解:设一份量为x。
(2x+5)∶(5x+2)=5∶9
x=5
小牛原来吃的肉块数∶2x=10块
大牛∶5x=25块。
答:略。
【考点十一】复杂的比例问题。
【方法点拨】
稍复杂的比例问题,先判断等量关系,再建立方程求解。
【典型例题】
小明和小芳两人压岁钱的比是4∶3,开学时交学费用去钱的比是18∶13,这时小明和小芳各剩下36元、48元,求原来两人各有多少元压岁钱?
解析:792元;594元。
【对应练习】
兄弟两人月收入的比为4∶3,月支出比为11∶6,月结余均为3600元,问每人每月收入多少元?
解析:
解:设兄弟两人月收入分别为4x元,3x元
(4x-3600)∶(3x-3600)=11∶6
6×(4x-3600)=11×(3x-3600)
24x-21600=33x-39600
33x-24x=39600-21600
9x=18000
x=18000÷9
x=2000
2000×4=8000(元)
2000×3=6000(元)
答:兄弟两人每个月的收入分别是8000元、6000元。
(拓展篇其一)第二单元百分数(二)拓展篇·利润问题基础版-六年级数学下册典型例题系列(原卷版+解析版)人教版: 这是一份(拓展篇其一)第二单元百分数(二)拓展篇·利润问题基础版-六年级数学下册典型例题系列(原卷版+解析版)人教版,文件包含第二单元百分数二拓展篇·利润问题基础版-六年级数学下册典型例题系列原卷版人教版docx、第二单元百分数二拓展篇·利润问题基础版-六年级数学下册典型例题系列解析版人教版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
(拓展篇其二)第二单元百分数(二)拓展篇·利润问题拓展版-六年级数学下册典型例题系列(原卷版+解析版)人教版: 这是一份(拓展篇其二)第二单元百分数(二)拓展篇·利润问题拓展版-六年级数学下册典型例题系列(原卷版+解析版)人教版,文件包含第二单元百分数二拓展篇·利润问题拓展版-六年级数学下册典型例题系列原卷版人教版docx、第二单元百分数二拓展篇·利润问题拓展版-六年级数学下册典型例题系列解析版人教版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
小学数学人教版六年级上册2 分数除法课后练习题: 这是一份小学数学人教版六年级上册2 分数除法课后练习题,文件包含人教版六年级数学上册典型例题系列之第三单元分数除法应用题部分拓展篇原卷版docx、人教版六年级数学上册典型例题系列之第三单元分数除法应用题部分拓展篇解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。