- 第14讲 有理数及其运算(提高)练习题 试卷 10 次下载
- 第15讲 用字母表示数及整式(基础)学案 学案 12 次下载
- 第17讲 整式的加减(一)——合并同类项(基础)学案 学案 11 次下载
- 第18讲 整式的加减(一)——合并同类项(提高)学案 学案 12 次下载
- 第19讲 整式的加减(二)——去括号与添括号(基础)学案 学案 11 次下载
数学七年级上册3.3 整式导学案
展开用字母表示数及整式(提高)知识讲解
【学习目标】
1.知道字母能表示什么;能用字母写出简单问题中的数量关系;
2. 能按要求列出代数式,会求代数式的值;
3.会识别单项式系数与次数、多项式的项与系数;
4.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系.
【要点梳理】
要点一、字母表示数
用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义了.举例:如果用a、b表示任意两个有理数,那么加法交换律可以用字母表示为:a+b=b+a.乘法交换律可以用字母表示为:ab=ba
要点二、代数式
1.代数式的定义:诸如:16n ,2a+3b ,34 ,,等式子,它们都是用运算符号把数和字母连接而成的,像这样的式子叫做代数式,单独的一个数或一个字母也是代数式.
要点诠释:
带等号或不等号的式子不是代数式,如,,等都不是代数式.
2.列代数式:
在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.
要点诠释:代数式的书写规范:
(1)字母与数字或字母与字母相乘时,通常把乘号写成“· ”或省略不写;
(2)除法运算一般以分数的形式表示;
(3)字母与数字相乘时,通常把数字写在字母的前面;
(4)字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;
(5)如果字母前面的数字是1,通常省略不写.
3.代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.
要点三、整式
1.单项式
(1)单项式的定义:如,,-1,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.
要点诠释:单项式一定是代数式,但若分母中含有字母的代数式,如就不是单项式,因为它无法写成数字与字母的乘积.
(2)单项式的系数:单项式中的数字因数叫做这个单项式的系数.
要点诠释:
①确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数.
②圆周率π是常数,单项式中出现π时,应看作系数.
③当一个单项式的系数是1或-1时,“1”通常省略不写.
④单项式的系数是带分数时,通常写成假分数,如:写成.
(3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.
要点诠释:没有写指数的字母,实际上其指数是1,计算时不能将其遗漏.
2.多项式
(1)多项式的定义:几个单项式的和叫做多项式.
要点诠释:“几个”是指两个或两个以上.
(2)多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项.
要点诠释:
①多项式的每一项包括它前面的符号.
②一个多项式含有几项,就叫几项式,如:是一个三项式.
(3)多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
要点诠释:
①多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.
②一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.
(4)升幂排列与降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;若按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.
如:多项式2x3y2-xy3+x2y4-5x4-6是六次五项式,按x的降幂排列为
-5x4+2x3y2+x2y4-xy3-6,在这里只考虑x的指数,而不考虑其它字母;按y的升幂排列为-6-5x4+2x3y2-xy3+x2y4.
要点诠释:
①重新排列多项式时,每一项一定要连同它的正负号一起移动;
②含有两个或两个以上字母的多项式,常常按照其中某一个字母的升幂排列或降幂排列.
3.整式:单项式与多项式统称为整式.
要点诠释:
(1)单项式、多项式、整式与代数式这四者之间的关系:单项式、多项式必是整式,整式必是代数式,但反过来就不一定成立.
(2)分母中含有字母的式子一定不是整式,但是代数式.
【典型例题】
类型一、字母表示数
1.填空:
(1)某商场将一种商品A按标价的9折出售(即优惠10%)仍可获利10%,若商场商品A的标价为a元,那么该商品的进价为________元(列出式子即可,不用化简).
(2)有a名男生和b名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块.这a名男生和b名女生一共搬了 块砖(用含a.b的代数式表示).
【思路点拨】和、差形式的代数式要在单位前把代数式括起来.
【答案】(1);(2)(40a+30b)
【解析】本例属于实际生活问题,应分清“进价”、“标价”、“利润”、“利润率”、“打折”等问题,打几折就是标价的十分之几.
【总结升华】解答本例需弄清以下两个数量关系:
(1)利润=售价-进价; (2)利润率=.
举一反三:
【变式】(2020•自贡)为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为( )
A.a﹣10% B. a•10% C. a(1﹣10%) D. a(1+10%)
【答案】C.
类型二、代数式
2.为了节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.
(1)若某用户10月份用去a度电,则他应缴多少电费?
(2)若该用户11月份用了150度电,则该缴多少电费?
【思路点拨】当a﹥140,应付费用分为两部分,一部分为0.43×140元,
另一部分为0.57×(a-140)元.
【答案与解析】
解:(1)当a≤140时,电费为0.43a元;
当a>140时,电费为:元.
(2)因为用电量为150度,大于140度,
因此把a=150代入代数式,得
(元).
因此,该缴电费65.9元.
【总结升华】根据a的不同取值,分别对应不同的代数式.
举一反三:
【变式1】一个堤坝的截面是等腰梯形,最上面一层铺石块a块,往下每层多铺一块,最下面一层铺了b块,共铺了n层,共铺石块 块?当a=20,b=40,n=17时,堤坝的这个截面铺石块 块?
【答案】(a+b)n,510块.
【变式2】代数式(a+b)n的意义.
【答案】答案不唯一,举一例:设某两数为,则表示“这两个数平均数的n倍.
类型三、整式
3.(2020•杭州模拟)整式﹣0.3x2y,0,,,,﹣2a2b3c中是单项式的个数有( )
A.2个 B. 3个 C. 4个 D. 5个
【答案】C.
【解析】
解:整式﹣0.3x2y,0,,,,﹣2a2b3c中,
单项式有:﹣0.3x2y,0,,﹣2a2b3c,共4个.
【总结升华】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,即可得出答案.
举一反三:
【变式】下列代数式:,其中单项式是_______________,多项式是_______________.
【答案】①②③,④⑥
4.已知多项式.
(1)求多项式各项的系数和次数.
(2)如果多项式是七次五项式,求m的值.
【答案与解析】(1)依题意知此多项式是五项式,第一项的系数是-6,次数是3;第二项的系数是-7,次数是3m+1;第三项的系数是,次数是4;第四项系数是-l,次数3;第五项-5系数是-5,次数是0.
(2)由多项式是七次五项式,可得的次数是7,即3m-1+2=7,解得m=2.
【总结升华】对于单项式的次数为3m+1,可能不太习惯,通过适量的练习,会对用字母表示多项式的次数或系数有较深地认识.
举一反三:
【变式】多项式是关于的二次三项式,求a与b的差的相反数.
【答案】
5.(2020•延庆县一模)已知:x2﹣5x=6,请你求出代数式10x﹣2x2+5的值.
【思路点拨】先把10x﹣2x2+5变形为﹣2(x2﹣5x)+5,然后把x2﹣5x=6整体代入进行计算即可.
【答案与解析】
解:10x﹣2x2+5
=﹣2(x2﹣5x)+5,
∵x2﹣5x=6,
∴原式=﹣2×6+5=﹣12+5=﹣7.
【总结升华】本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.
数学人教版第二章 整式的加减综合与测试导学案及答案: 这是一份数学人教版第二章 整式的加减综合与测试导学案及答案,共14页。
北师大版九年级下册4 二次函数的应用导学案: 这是一份北师大版九年级下册4 二次函数的应用导学案,文件包含实际问题与二次函数巩固练习提高doc、实际问题与二次函数知识讲解提高doc等2份学案配套教学资源,其中学案共14页, 欢迎下载使用。
北师大版七年级下册2 探索直线平行的条件导学案: 这是一份北师大版七年级下册2 探索直线平行的条件导学案,文件包含平行线的判定提高知识讲解doc、平行线的判定提高巩固练习doc等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。