数学2.6 有理数的加减混合运算同步达标检测题
展开1.理解有理数乘方的定义;
2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;
3. 进一步掌握有理数的混合运算.
4. 会用科学记数法表示大数.
【要点梳理】
要点一、有理数的乘方
定义:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(pwer).
即有:.在中,叫做底数, n叫做指数.
要点诠释:
(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.
(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.
(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写.
要点二、乘方运算的符号法则
(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,如 ≥0.
要点诠释:
(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.
(2)任何数的偶次幂都是非负数.
要点三、有理数的混合运算
有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
要点诠释:
(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;
(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.
(3)在运算过程中注意运算律的运用.
要点四、科学记数法
把一个大于10的数表示成的形式(其中是整数数位只有一位的数,l≤||<10,是正整数),这种记数法叫做科学记数法,如=.
要点诠释:
(1)负数也可以用科学记数法表示,“”照写,其它与正数一样,如=;
(2)把一个数写成形式时,若这个数是大于10的数,则n比这个数的整数位数少1.
【典型例题】
类型一、有理数的乘方
1.(2020•虞城县一模)下列各数:①﹣12;②﹣(﹣1)2;③﹣13;④(﹣1)2,其中结果等于﹣1的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
【思路点拨】原式各项计算得到结果,即可作出判断.
【答案】A.
【解析】解:①﹣12=﹣1,符合题意;②﹣(﹣1)2=﹣1,符合题意;③﹣13=﹣1,符合题意;④(﹣1)2=1,不符合题意.
故选A.
【总结升华】注意与的意义的区别.(n为正整数),(n为正整数).
举一反三:
【变式】已知,且,则的倒数的相反数是 .
【答案】
类型二、乘方运算的符号法则
2.不做运算,判断下列各运算结果的符号.
(-2)7,(-3)24,(-1.0009)2009,,-(-2)2010
【思路点拨】理解乘方的意义,掌握乘方的符号法则.
【答案与解析】解:根据乘方的符号法则判断可得:
(-2)7运算的结果是负;(-3)24运算的结果为正;(-1.0009)2009运算的结果是负;运算的结果是正;-(-2)2010运算的结果是负.
【总结升华】 “一看底数,二看指数”,当底数是正数时,结果为正;当底数是0,指数不为0时,结果是0;当底数是负数时,再看指数,若指数为偶数,结果为正;若指数是奇数,结果为负.
举一反三:
【变式】(2020春•富阳市校级期中)计算(﹣2)2015+(﹣2)2014所得的结果是( )
A.﹣2B.2C.﹣22014D.22015
【答案】C.
解:(﹣2)2015+(﹣2)2014=(﹣2)2014(﹣2+1)=22014×(﹣1)=﹣22014.
类型三、有理数的混合运算
3.计算:
(1)-(-3)2+(-2)3÷[(-3)-(-5)]
(2)[73-6×(-7)2-(-1)10]÷(-214-24+214)
(3);
(4)
【答案与解析】
解:(1)-(-3)2+(-2)3÷[(-3)-(-5)]
=-9+(-8)÷(-3+5)
=-9+(-8)÷2
=-9+(-4)=-13
(2)[73-6×(-7)2-(-1)10]÷(-214-24+214)
=(7×72-6×72-1)÷(-214+214-24)
=[72×(7-6)-1]÷(-24)
=(49-1)÷(-24)
=-2
(3)有绝对值的先去掉绝对值,然后再按混合运算.
原式
(4)将带分数化为假分数,小数化为分数后再进行运算.
【总结升华】有理数的混合运算,确定运算顺序是关键,细心计算是运算正确的前提.
类型四、科学记数法
4.(2020•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )
A.0.675×105B.6.75×104C.67.5×103D.675×102
【思路点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【答案】B.
将67500用科学记数法表示为:6.75×104.
【总结升华】将一个绝对值较大的数写成科学记数法的形式时,其中1≤|a|<10,n为比整数位数少1的数.在进行运算时,a部分和的部分分别运算,然后再把结果整理成的形式.
类型五、探索规律
5.下面是按一定规律排列的一列数:
第1个数:;
第2个数:;
第3个数:;
…
第n个数:.
那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ).
A.第10个数 B.第11个数 C.第12个数 D.第13个数
【答案】A
【解析】第1个数结果为;第2个数结果为;第3个数结果为;…;发现运算中在后边的各式为,分子、分母相约为1,所以第n个数结果为,把第10、11、12、13个数分别求出,比较大小即可.
【总结升华】解答此类问题的方法一般是:从所给的特殊情形入手,再经过猜想归纳,从看似杂乱的问题中找出内在的规律,使问题变得有章可循.
举一反三:
【变式】观察下面三行数:
①-3,9,-27,81,-243,729,…
②0,12,-24,84,-240,732,…
③-1,3,-9,27,-81,243,…
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和.
【答案】
解:(1)第①行数的规律是:-3,(-3)2,(-3)3,(-3)4,…;
(2)第②行数是第①行数相应的数加3,即:-3+3,(-3)2+3,(-3)3+3,(-3)4+3,…;第③行数是第①行数相应的数的,即,,,,…;
(3)每行数中的第10个数的和是:59049+59052+19683=137784.
初中数学北师大版九年级上册1 反比例函数课时作业: 这是一份初中数学北师大版九年级上册1 反比例函数课时作业,文件包含反比例函数提高巩固练习doc、反比例函数提高知识讲解doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
初中数学北师大版九年级上册2 用配方法求解一元二次方程习题: 这是一份初中数学北师大版九年级上册2 用配方法求解一元二次方程习题,文件包含一元二次方程的解法二配方法知识讲解提高doc、一元二次方程的解法二配方法巩固练习提高doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
初中数学北师大版九年级上册第一章 特殊平行四边形2 矩形的性质与判定复习练习题: 这是一份初中数学北师大版九年级上册第一章 特殊平行四边形2 矩形的性质与判定复习练习题,文件包含矩形提高巩固练习doc、矩形提高知识讲解doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。