广东省深圳市龙岗区中考数学二模试卷
展开
这是一份广东省深圳市龙岗区中考数学二模试卷,共22页。
深圳市龙岗区中考数学二模试卷
一.选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,只有一个是正确)
1.(3分)下列图形既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
2.(3分)下列计算错误的是( )
A.a2•a=a3 B.(ab)2=a2b2 C.(a2)3=a5 D.﹣a+2a=a
3.(3分)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为( )
A.25×105 B.2.5×106 C.0.25×107 D.2.5×107
4.(3分)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲和乙一样稳定 D.甲、乙稳定性没法对比
5.(3分)已知函数y=,则自变量x的取值范围是( )
A.x<﹣1 B.x>﹣1 C.x≤﹣1 D.x≥﹣1
6.(3分)如图,△ABC中,AC=5,cosB=,sinC=,则△ABC的面积为( )
A. B.12 C.14 D.21
7.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为10cm,求△PAB的周长为( )
A.5cm B.10cm C.20cm D.15cm
8.(3分)一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是( )
A.168元 B.300元 C.60元 D.400元
9.(3分)已知,一次函数y=kx+b的图象如图,下列结论正确的是( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
10.(3分)抛物线y=(x+2)2+3的顶点坐标是( )
A.(﹣2,3) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)
11.(3分)如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度( )
A.变长了1.5米 B.变短了2.5米 C.变长了3.5米 D.变短了3.5米
12.(3分)如图,正△ABC内接于⊙O,P是劣弧BC上任意一点,PA与BC交于点E,有如下结论:①PA=PB+PC;②;③PA•PE=PB•PC.其中,正确结论的个数为( )
A.3个 B.2个 C.1个 D.0个
二、填空题(本题共4小题,每小题3分,共12分)
13.(3分)已知一元二次方程x2﹣4x+3=0的两根为x1,x2,那么(1+x1)(1+x2)的值是 .
14.(3分)若关于x的分式方程无解,则m的值为 .
15.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为 .
16.(3分)如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则Sn= (用含n的式子表示).
三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)
17.(5分)计算:﹣22+2cos60°+.
18.(6分)先化简再求值:,x是不等式2x﹣3(x﹣2)≥1的一个非负整数解.
19.(7分)某校对该校七年级(1)班全体学生的血型做了一次全面调查,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)该校七年级(1)班有多少名学生.
(2)求出扇形统计图中“O型”血所对扇形的圆心角的度数.
(3)将条形统计图中“B型”血部分的条形图补充完整.
20.(8分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
21.(8分)如图所示,已知正方形ABCD,直角三角形纸板的一个锐角顶点与点A重合,纸板绕点A旋转时,直角三角形纸板的一边与直线CD交于E,分别过B、D作直线AE的垂线,垂足分别为F、G.
(1)当点E在DC延长线时,如图①,求证:BF=DG﹣FG;
(2)将图①中的三角板绕点A逆时针旋转得图②、图③,此时BF、FG、DG之间又有怎样的数量关系?请直接写出结论(不必证明)
22.(9分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.
23.(9分)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
深圳市龙岗区中考数学二模试卷
参考答案与试题解析
一.选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,只有一个是正确)
1.(3分)下列图形既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
【解答】解:A、不是轴对称图形,是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,是中心对称图形.故错误.
故选:D.
2.(3分)下列计算错误的是( )
A.a2•a=a3 B.(ab)2=a2b2 C.(a2)3=a5 D.﹣a+2a=a
【解答】解:A、正确,符合同底数幂的乘法法则;
B、正确,符合积的乘方法则;
C、错误,(a2)3=a6;
D、正确,符合合并同类项的法则.
故选C.
3.(3分)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为( )
A.25×105 B.2.5×106 C.0.25×107 D.2.5×107
【解答】解:将2500000用科学记数法表示为2.5×106.
故选B.
4.(3分)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲和乙一样稳定 D.甲、乙稳定性没法对比
【解答】解:∵是S甲2=1.2,S乙2=1.6,
∴S甲2<S乙2,
∴甲、乙两人在这次射击训练中成绩稳定的是甲,
∴甲比乙稳定;
故选A.
5.(3分)已知函数y=,则自变量x的取值范围是( )
A.x<﹣1 B.x>﹣1 C.x≤﹣1 D.x≥﹣1
【解答】解:由题意得,x+1≥0,
解得x≥﹣1.
故选D.
6.(3分)如图,△ABC中,AC=5,cosB=,sinC=,则△ABC的面积为( )
A. B.12 C.14 D.21
【解答】解:作AD⊥BC于点D,
∵△ABC中,AC=5,cosB=,sinC=,
∴,得AD=3,∠B=45°,
∴tanB=,得BD=3,CD=,
∴==,
故选A.
7.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为10cm,求△PAB的周长为( )
A.5cm B.10cm C.20cm D.15cm
【解答】解:连结PG、PH,如图,
∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,
∴OM垂直平分PG,ON垂直平分PH,
∴AP=AG,BP=BH,
∴△PAB的周长=AP+AB+BP
=AG+AB+BH
=GH
=10cm.
故选B.
8.(3分)一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是( )
A.168元 B.300元 C.60元 D.400元
【解答】解:设每件服装进价为x元,由题意得:
(1+50%)x×80%=360,
解得:x=300.
故每件服装的进价是300元.
故选:B.
9.(3分)已知,一次函数y=kx+b的图象如图,下列结论正确的是( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
【解答】解:如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k>0,
直线与y轴负半轴相交,所以b<0.
故选B.
10.(3分)抛物线y=(x+2)2+3的顶点坐标是( )
A.(﹣2,3) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)
【解答】解:由于y=(x+2)2+3为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(﹣2,3).
故选:A.
11.(3分)如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度( )
A.变长了1.5米 B.变短了2.5米 C.变长了3.5米 D.变短了3.5米
【解答】解:设小明在A处时影长为x,B处时影长为y.
∵AD∥OP,BC∥OP,
∴△ADM∽△OPM,△BCN∽△OPN,
∴=,=,
则=,
∴x=5;
=,
∴y=1.5,
∴x﹣y=3.5,
故变短了3.5米.
故选:D.
12.(3分)如图,正△ABC内接于⊙O,P是劣弧BC上任意一点,PA与BC交于点E,有如下结论:①PA=PB+PC;②;③PA•PE=PB•PC.其中,正确结论的个数为( )
A.3个 B.2个 C.1个 D.0个
【解答】解:延长BP到D,使PD=PC,连接CD,可得∠CPD=∠BAC=60°,
则△PCD为等边三角形,
∵△ABC为正三角形,
∴BC=AC
∵∠PBC=∠CAP,∠CPA=∠CDB,
∴△APC≌△BDC(AAS).
∴PA=DB=PB+PD=PB+PC,故①正确;
由(1)知△PBE∽△PAC,则=,=,+=+≠1,
∴②错误;
∵∠CAP=∠EBP,∠BPE=∠CPA
∴△PBE∽△PAC
∴
∴PA•PE=PB•PC,故③正确;
故选B.
二、填空题(本题共4小题,每小题3分,共12分)
13.(3分)已知一元二次方程x2﹣4x+3=0的两根为x1,x2,那么(1+x1)(1+x2)的值是 8 .
【解答】解:根据题意得x1+x2=4,x1x2=3,
所以(1+x1)(1+x2)=1+x1+x2+x1x2=1+4+3=8.
故答案为8.
14.(3分)若关于x的分式方程无解,则m的值为 1 .
【解答】解:两边都乘以(x﹣2),得
x﹣1=m+3(x﹣2).
m=﹣2x+5.
分式方程的增根是x=2,
将x=2代入,得
m=﹣2×2=5=1,
故答案为:1.
15.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为 3 .
【解答】解:如图:
∵四边形ABCD、HBEO、OECF、GOFD为矩形,
又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,
∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,
∴S四边形HAGO=S四边形CEOF=2×2=4,
∴xy=k+1=4,
解得k=3
故答案为3.
16.(3分)如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则Sn= (用含n的式子表示).
【解答】解:n+1个边长为2的等边三角形有一条边在同一直线上,则B1,B2,B3,…Bn在一条直线上,作出直线B1B2.
∴S△AB1C1=×2×=,
∵∠B1C1B2=60°,
∴AB1∥B2C1,
∴△B1C1B2是等边△,且边长=2,
∴△B1B2D1∽△C1AD1,
∴B1D1:D1C1=1:1,
∴S1=,
同理:B2B3:AC2=1:2,
∴B2D2:D2C2=1:2,
∴S2=,
同理:BnBn+1:ACn=1:n,
∴BnDn:DnCn=1:n,
∴Sn=.
故答案为:.
三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)
17.(5分)计算:﹣22+2cos60°+.
【解答】解:原式=﹣4+3﹣2×+3
=﹣4+3﹣1+3
=1.
18.(6分)先化简再求值:,x是不等式2x﹣3(x﹣2)≥1的一个非负整数解.
【解答】解:原式=÷
=•
=•
=(2﹣x)(3﹣x)
=x2﹣5x+6,
解不等式得x≤5,
符合不等式解集的整数是0,1,2,3,4,5.
由题意知x≠3且x≠﹣2,
所以x可取0,1,2,4,5;
当x=0时,原式=6(答案不唯一).
19.(7分)某校对该校七年级(1)班全体学生的血型做了一次全面调查,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)该校七年级(1)班有多少名学生.
(2)求出扇形统计图中“O型”血所对扇形的圆心角的度数.
(3)将条形统计图中“B型”血部分的条形图补充完整.
【解答】解:(1)8÷16%=50(名)
答:该校七年级(1)班有50名学生.
(2)依题意有“O型”血占的百分比为:100%﹣32%﹣16%﹣12%=40%.
扇形统计图中“O型”血所对扇形的圆心角的度数40%×360°=×360°=144°.
(3)“B型”血部分的人数为50×32%=16人,补全条形统计图
20.(8分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
【解答】解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)
(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.
又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着X的增大而增大,
∴当x=32时,W=2160
答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.
(3)取W=2000得,﹣10x2+700x﹣10000=2000
解这个方程得:x1=30,x2=40.
∵a=﹣10<0,抛物线开口向下.
∴当30≤x≤40时,w≥2000.
∵20≤x≤32
∴当30≤x≤32时,w≥2000.
设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000
∵k=﹣200<0,
∴P随x的增大而减小.
∴当x=32时,P的值最小,P最小值=3600.
答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.
21.(8分)如图所示,已知正方形ABCD,直角三角形纸板的一个锐角顶点与点A重合,纸板绕点A旋转时,直角三角形纸板的一边与直线CD交于E,分别过B、D作直线AE的垂线,垂足分别为F、G.
(1)当点E在DC延长线时,如图①,求证:BF=DG﹣FG;
(2)将图①中的三角板绕点A逆时针旋转得图②、图③,此时BF、FG、DG之间又有怎样的数量关系?请直接写出结论(不必证明)
【解答】证明:(1)如图①,
∵四边形ABCD是正方形,
∴AB=AD,
∵B、D作直线AE的垂线,垂足分别为F、G.
∴∠AFB=∠DGA=90°,
∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°
∴∠ABF=∠GAD,
在△ABF和△ADG中,
,
∴△ABF≌△ADG(AAS),
∴BF=AG,AF=DG,
∵AG=AF﹣FG;
∴BF=DG﹣FG;
(2)如图②,
∵四边形ABCD是正方形,
∴AB=AD,
∵B、D作直线AE的垂线,垂足分别为F、G.
∴∠AFB=∠DGA=90°,
∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°
∴∠ABF=∠DAG,
在△ABF和△ADG中,
,
∴△ABF≌△ADG(AAS),
∴BF=AG,AF=DG,
∵AG=AF+FG;
∴BF=DG+FG;
如图③,∵四边形ABCD是正方形,
∴AB=AD,
∵B、D作直线AE的垂线,垂足分别为F、G.
∴∠AFB=∠DGA=90°,
∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°
∴∠ABF=∠DAG,
在△ABF和△ADG中,
,
∴△ABF≌△ADG(AAS),
∴BF=AG,AF=DG,
∵AG=FG﹣AF;
∴BF=FG﹣DG.
22.(9分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.
【解答】解:(1)∵AE切⊙O于点E,
∴AE⊥CE,又OB⊥AT,
∴∠AEC=∠CBO=90°,
又∠BCO=∠ACE,
∴△AEC∽△OBC,又∠A=30°,
∴∠COB=∠A=30°;
(2)∵AE=3,∠A=30°,
∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,
∵OB⊥MN,∴B为MN的中点,又MN=2,
∴MB=MN=,
连接OM,在△MOB中,OM=R,MB=,
∴OB==,
在△COB中,∠BOC=30°,
∵cos∠BOC=cos30°==,
∴BO=OC,
∴OC=OB=,
又OC+EC=OM=R,
∴R=+3,
整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,
解得:R=﹣23(舍去)或R=5,
则R=5;
(3)以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,
画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:
∵EF=5,直径ED=10,可得出∠FDE=30°,
∴FD=5,
则C△EFD=5+10+5=15+5,
由(2)可得C△COB=3+,
∴C△EFD:C△COB=(15+5):(3+)=5:1.
∵EF=5,直径FG=10,可得出∠FGE=30°,
∴EG=5,
则C△EFG=5+10+5=15+5,
∴C△EFG:C△COB=(15+5):(3+)=5:1.
23.(9分)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
【解答】解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)
∴点B的坐标为(4,﹣1).
∵抛物线过A(0,﹣1),B(4,﹣1)两点,
∴,解得:b=2,c=﹣1,
∴抛物线的函数表达式为:y=x2+2x﹣1.
(2)方法一:
i)∵A(0,﹣1),C(4,3),
∴直线AC的解析式为:y=x﹣1.
设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.
∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1),
则平移后抛物线的函数表达式为:y=(x﹣m)2+m﹣1.
解方程组:,
解得,
∴P(m,m﹣1),Q(m﹣2,m﹣3).
过点P作PE∥x轴,过点Q作QF∥y轴,则
PE=m﹣(m﹣2)=2,QF=(m﹣1)﹣(m﹣3)=2.
∴PQ==AP0.
若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:
①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.
如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.
∴可设直线l1的解析式为:y=x+b1,
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,
∴直线l1的解析式为:y=x﹣5.
解方程组,得:,
∴M1(4,﹣1),M2(﹣2,﹣7).
②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.
如答图2,取AB的中点F,则点F的坐标为(2,﹣1).
由A(0,﹣1),F(2,﹣1),P0(2,1)可知:
△AFP0为等腰直角三角形,且点F到直线AC的距离为.
过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.
∴可设直线l2的解析式为:y=x+b2,
∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,
∴直线l2的解析式为:y=x﹣3.
解方程组,得:,
∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).
综上所述,所有符合条件的点M的坐标为:
M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).
方法二:
∵A(0,1),C(4,3),
∴lAC:y=x﹣1,
∵抛物线顶点P在直线AC上,设P(t,t﹣1),
∴抛物线表达式:,
∴lAC与抛物线的交点Q(t﹣2,t﹣3),
∵一M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1),
①当M为直角顶点时,M(t,t﹣3),,
∴t=1±,
∴M1(1+,﹣2),M2(1﹣,﹣2﹣),
②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,
将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),
将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),
将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),
∴,
∴t1=4,t2=﹣2,
∴M1(4,﹣1),M2(﹣2,﹣7),
③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),
综上所述,所有符合条件的点M的坐标为:
M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).
ii)存在最大值.理由如下:
由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.
如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′==.
∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.
∴的最大值为=.
相关试卷
这是一份2022年广东省深圳市龙岗区中考数学二模试卷,共24页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。
这是一份2023年广东省深圳市龙岗区中考数学二模试卷(含答案),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年广东省深圳市龙岗区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。