所属成套资源:中考第二轮复习专题
专题18三角形及全等三角形(基础巩固练习) 解析版
展开
这是一份专题18三角形及全等三角形(基础巩固练习) 解析版,共35页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年中考数学 专题18 三角形及全等三角形(基础巩固练习,共40个小题)一、选择题(共20小题):1.(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是( )A.2cm B.3cm C.6cm D.9cm【答案】C【解析】解:设第三边长为xcm,根据三角形的三边关系可得:6﹣3<x<6+3,解得:3<x<9,故选:C.2.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是( )A.50° B.60°C.70° D.80°【答案】D【解析】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.3.(2020•沈阳)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为( )A.65° B.55° C.45° D.35°【答案】B【解析】解:∵AC⊥CB,∴∠ACB=90°,∴∠ABC=180°﹣90°﹣∠BAC=90°﹣35°=55°,∵直线AB∥CD,∴∠ABC=∠BCD=55°,故选:B.4.(2020•锦州)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是( )A.80° B.90° C.100° D.110°【答案】C【解析】解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣30°﹣50°=100°(三角形内角和定义).∵CD平分∠ACB,∴∠BCD∠ACB100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°.故选:C.5.(2020•眉山)一副三角板如图所示摆放,则∠α与∠β的数量关系为( )A.∠α+∠β=180°B.B.∠α+∠β=225°C.C.∠α+∠β=270°D.D.∠α=∠β【答案】B【解析】解:如图,在四边形ABCD中,且∠1=∠α,∠2=∠β,∵∠A+∠1+∠C+∠2=360°,∴∠α+∠β=360°﹣90°﹣45°=225°.故选:B.6.(2020•宿迁)在△ABC中,AB=1,BC,下列选项中,可以作为AC长度的是( )A.2 B.4 C.5 D.6【答案】A【解析】解:∵在△ABC中,AB=1,BC,∴1<AC1,∵1<21,41,51,61,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.7.(2020•淄博)如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于( )A.30° B.35° C.40° D.45°【答案】C【解析】解:∵AC⊥BC,∴∠ACB=90°,又∵∠B=50°,∴∠CAB=90°﹣∠B=40°,∵CD∥AB,∴∠DCA=∠CAB=40°.故选:C.8.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是( )A.SAS B.AAS C.SSS D.ASA【答案】A【解析】解:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故选:A.9.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有( )个.A.4 B.3 C.2 D.1【答案】B【解析】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中, ∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;假设MO平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.10.(2020秋•重庆期末)如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有( )①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A.1个 B.2个 C.3个 D.4个【答案】B【解析】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选:B.11.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A.85° B.75° C.65° D.60°【答案】B【解析】解:如图所示,∠α=∠E+∠ACB=30°+45°=75°,故选:B.12.(2020•湖北)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是( )A.15° B.20° C.25° D.30°【答案】A【解析】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.13.(2020秋•滦南县期末)如图,已知AC=DB,下列四个条件:①∠A=∠D;②∠ABD=∠DCA;③∠ACB=∠DBC;④∠ABC=∠DCB.其中能使△ABC≌△DCB的有( )A.1个 B.2个 C.3个 D.4个【答案】A【解析】解:根据SAS,条件③,可以使得△ABC≌△DCB,故选:A.14.(2020秋•天河区期末)如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是( )A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF【答案】B【解析】解:∵AE∥DF,∴∠A=∠D,A、根据SAS,可以推出△ACE≌△DBF,本选项不符合题意.B、SSA不能判定三角形全等,本选项符合题意.C、根据ASA,可以推出△ACE≌△DBF,本选项不符合题意.D、根据AAS,可以推出△ACE≌△DBF,本选项不符合题意.故选:B.15.(2020秋•五华区期末)如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为( )A.2 B.5 C.8 D.11【答案】C【解析】解:∵E为BC的中点,∴BE=EC,∵AB∥CD,在△BEF与△CED中,,∴△BEF≌△CED(AAS)∴EF=DE,BF=CD=3,∴AF=AB+BF=8,∵AE⊥DE,EF=DE,∴AF=AD=8,故选:C.16.(2020秋•江汉区期末)如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD.再作出BF的垂线DE,使A,C,E三点在一条直线上,通过证明△ABC≌△EDC,得到DE的长就等于AB的长,这里证明三角形全等的依据是( )A.HL B.SAS C.SSS D.ASA【答案】D【解析】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:D.17.(2020秋•莒南县期末)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,下列结论:①∠EAB=∠FAC;②AF=AC;③FA平分∠EFC;④∠BFE=∠FAC中,正确的有( )个.A.1 B.2 C.3 D.4【答案】D【解析】解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,∠AFC=∠C,∴∠EFA=∠AFC,即FA平分∠EFC.又∵∠AFB=∠C+∠FAC=∠AFE+∠BFE,∴∠BFE=∠FAC.故①②③④正确.故选:D.18.(2020•黄州区校级模拟)如图,在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC于点E,AE与CD交于点F,连接BF,DE,下列结论中:①AF=BC;②∠DEB=45°,③AE=CE+2BD,④若∠CAE=30°,则1,正确的有( )A.4个 B.3个 C.2个 D.1个【答案】B【解析】解:∵AE⊥BC,∴∠AEC=∠ADC=∠CDB=90°,∵∠AFD=∠CFE,∴∠DAF=∠DCB,∵AD=DC,∴△ADF≌△CDB,∵AF=BC,DF=DB,故①正确,∴∠DFB=∠DBF=45°,取BF的中点O,连接OD、OE.∵∠BDF=∠BEF=90°,∴OE=OF=OB=OD,∴E、F、D、B四点共圆,∴∠DEB=∠DFB=45°,故②正确,如图1中,作DM⊥AE于M,DN⊥BC于N,易证△DMF≌△DNB,四边形DMEN是正方形,∴MF=BN,EM=EN,∴EF+EB=EM﹣FM+EN+NB=2EM=2DN,∵AE﹣CE=BC+EF﹣EC=EF+BE=2DN<2BD,∴AE﹣CE<2BD,即AE<EC+2BD,故③错误,如图2中,作DM⊥AE于M,DN⊥BC于N.易证△DMF≌△DNB,四边形DMEN是正方形,∴FM=BN,EM=EN=DN,∴EF+EB=EM﹣MF+EN+BN=2EN=2DN≤2BD,∵AE﹣EC=ADF+EF﹣EC=BC_EF﹣EC=EF+BE≤2BD,∴AE≤EC+2BD,故③错误,如图2中,延长FE到H,使得FH=FB.连接HC、BH.∵∠CAE=30°,∠CAD=45°,∠ADF=90°,∴∠DAF=15°,∠AFD=75°,∵∠DFB=45°,∴∠AFB=120°,∴∠BFH=60°,∵FH=BF,∴△BFH是等边三角形,∴BF=BH,∵BC⊥FH,∴FE=EH,∴CF=CH,∴∠CFH=∠CHF=∠AFD=75°,∴∠ACH=75°,∴∠ACH=∠AHC=75°,∴AC=AH,∵AF+FB=AF+FH=AH,∴AF+BF=AC,故④正确,故选:B.19.(2020秋•卢龙县期末)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为( )A.3 B.5 C.6 D.7【答案】B【解析】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.20.(2020秋•越秀区校级期中)如图,在Rt△ABC中,∠ACB=90°,BC=5cm,在AC上取一点E,使EC=BC,过点E作EF⊥AC,连接CF,使CF=AB,若EF=12cm,则下列结论不正确的是( )A.∠F=∠BCF B.AE=7cm C.EF平分AB D.AB⊥CF【答案】C【解析】解:∵EF⊥AC,∴∠AEF=∠ACB=90°,∴EF∥BC,∴∠F=∠BCF,故A正确;∵EF⊥AC,∴∠FEC=∠ACB=90°,在Rt△ABC和Rt△FEC中,,∴Rt△ABC≌Rt△FEC(HL),∴AC=EF=12cm,∵CE=BC=5cm,∴AE=AC﹣CE=7cm.故B正确;如果AE=CE,∵EF∥BC,∴EG是△ABC的中位线,∴EF平分AB,而AE与CE不一定相等,∴不能证明EF平分AB,故C错误;∵Rt△ABC≌Rt△FEC,∴∠A=∠F,∴∠A+∠ACD=∠F+∠ACD=90°,∴∠ADC=90°,∴AB⊥CF,故D正确.∴结论不正确的是C.故选:C.二、填空题(共10小题):21.(2019•大庆)如图,在△ABC中,D、E分别是BC,AC的中点,AD与BE相交于点G,若DG=1,则AD= .【答案】3【解析】解:∵D、E分别是BC,AC的中点,∴点G为△ABC的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为3.22.(2019•哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 度.【答案】60或10【解析】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60或10;23.(2020•江西)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为 .【答案】82°【解析】解:∵AC平分∠DCB,∴∠BCA=∠DCA,又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.24.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是 .(只填一个即可)【答案】AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).25.(2020秋•花都区期末)如图,D、C、F、B四点在同一条直线上,BC=DF,AC⊥BD于点C,EF⊥BD于点F,如果要添加一个条件,使△ABC≌△EDF,你添加的条件是 (注:只需写出一个条件即可).【答案】AB=ED或∠B=∠D或DE∥AB或∠A=∠E【解析】解:∵AC⊥BD于点C,EF⊥BD于点F,∴∠ACB=∠EFD=90°,∵BC=DF,∴根据HL,可以添加AB=ED,使得△ABC≌△EDF,根据SAS,可以添加∠B=∠D或DE∥AB,使得△ABC≌△EDF,根据AAS,可以添加∠A=∠E,使得△ABC≌△EDF,故答案为:AB=ED或∠B=∠D或DE∥AB或∠A=∠E.26.(2020秋•潮州期末)如图所示,在△ABC中,∠C=90°,DE⊥AB于点E,AC=AE,且∠CDA=55°,则∠B= 度.【答案】20【解析】解:∵DE⊥AB,∴∠C=∠AED=90°,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴∠EDA=∠CDA=55°,即∠CDE=110°,∴∠BDE=70°,∴∠B=90°﹣∠BDE=90°﹣70°=20°,故答案为:20.27.(2020秋•铁力市期末)如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE的度数为 .【答案】20°【解析】解:在△ABC中,∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°.∵AD平分∠BAC,∴∠CAD∠BAC68°=34°.∵AE是△ABC的高,∴∠AEC=90°.在△ACE中,∠AEC=90°,∠C=76°,∴∠CAE=180°﹣∠AEC﹣∠C=180°﹣90°﹣76°=14°.∴∠DAE=∠CAD﹣∠CAE=34°﹣14°=20°.故答案为:20°.28.(2020秋•沂南县期末)如图,在直角三角形ABC中,点P、Q分别是AC、BC边上的两个动点,MP、NQ分别平分∠APQ和∠BQP,交AB于点M、N,MR、NR又分别平分∠BMP和∠ANQ,两条角平分线交于点R,则∠R= °.【答案】67.5°【解析】解:∵∠C+∠A+∠B=180°,∠C+∠CPQ+∠CQP=180°,∠C=90°,∴∠A+∠B=90°,∠CPQ+∠CQP=90°,∴∠APQ+∠BQP+∠CPQ+∠CQP=360°,∴∠APQ+∠BQP=270°,∵MP、NQ分别平分∠APQ和∠BQP,∴∠MPQ+∠NQP=∠APM+∠BQN=135°,∵∠MPQ+∠NQP+∠PMN+∠QNM=360°,∴∠PMN+∠QNM=225°,∵MR、NR又分别平分∠BMP和∠ANQ,∴∠NMR+∠MNR=112.5°,∵∠NMR+∠MNR+∠R=180°,∴∠R=67.5°.故答案为67.5.29.(2020秋•肇源县期末)如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E,若线段AE=3,则四边形ABCD的面积是 .【答案】9【解析】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠3,在△ABE和△ADF中,∵,∴△ABE≌△ADF(AAS),∴AE=AF=3,S△ABE=S△ADF,∴四边形AECF是边长为3的正方形,∴S四边形ABCD=S正方形AECF=32=9.故答案为:9. 30.(2020秋•西峰区期末)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE= cm.【答案】1.5【解析】解:∵BE⊥CE,AD⊥CE∴∠E=∠ADC=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠BCE+∠DCA=90°∴∠DAC=∠BCE在△ACD和△CBE中,,∴△ACD≌△CBE∴BE=CD=0.5(cm),EC=AD=2(cm)DE=CE﹣CD=1.5(cm),故答案为1.5三、解答题(共10小题):31.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.【答案】见解析。【解析】证明:连接AC,在△AEC与△AFC中,∴△AEC≌△AFC(SSS),∴∠CAE=∠CAF,∵∠B=∠D=90°,∴CB=CD.32.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【答案】(1)见解析;(2)见解析.【解析】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.33.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.【答案】(1)见解析;(2)13.【解析】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE13.34.(2020•黄石)如图,AB=AE,AB∥DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.【答案】(1)30°;(2)见解析.【解析】解(1)∵AB∥DE,∠E=40°,∴∠EAB=40°,∵∠DAB=70°,∴∠DAE=30°;(2)证明:在△ADE与△BCA中,,∴△ADE≌△BCA(ASA),∴AD=BC.35.(2020•常州)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.【答案】(1)见解析;(2)60°.【解析】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.36.(2020•内江)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【答案】(1)见解析;(2)70°.【解析】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD; (2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD(180°﹣40°)=70°.37.(2019•温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【答案】(1)见解析;(2)3.【解析】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3. 38.(2018•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【答案】(1)65°;(2)25°.【解析】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE∠CBD=65°; (2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.39.(2020•黔东南州)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.【答案】(1)全等;(2)BD;(3)S△ACD=;AD.【解析】解:(1)全等,理由是:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD( SAS);(2)如图3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE是等边三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴AE,∴BD;(3)如图2,过A作AF⊥CD于F,∵B、C、E三点在一条直线上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等边三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF,∴AF=AC×sin∠ACF=1,∴S△ACD,∴CF=AC×cos∠ACF=1,FD=CD﹣CF=2,在Rt△AFD中,AD2=AF2+FD23,∴AD.40.(2020•常德)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【答案】(1)见解析;(2)见解析.【解析】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BEPC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠ACD=∠A=60°,∴∠ADC=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°
相关试卷
这是一份初中数学人教版八年级上册12.1 全等三角形当堂检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册12.1 全等三角形综合训练题,共7页。试卷主要包含了 在下列结论中, 正确的是等内容,欢迎下载使用。
这是一份专题18三角形及全等三角形(基础巩固练习) 练习版,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。