专题03 不等式(组)问题-决胜2022中考数学压轴题全揭秘精品(原卷版)
展开《中考压轴题全揭秘》
专题03 不等式(组)问题
一、单选题
1.代数式中x的取值范围在数轴上表示为( )
A. B.
C. D.
2.甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为( )
A.商贩A的单价大于商贩B的单价
B.商贩A的单价等于商贩B的单价
C.商版A的单价小于商贩B的单价
D.赔钱与商贩A、商贩B的单价无关
3.给出下列5个命题:①两点之间直线最短;②同位角相等;③等角的补角相等;④不等式组 的解集是﹣2<x<2;⑤对于函数y=﹣0.2x+11,y随x的增大而增大.其中真命题的个数是( )
A.2 B.3 C.4 D.5
4.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()
A.个 B.个 C.个 D.个
5.已知不等式组,其解集在数轴上表示正确的是( )
6.我们定义=ad-bc,例如=2×5-3×4=10-12=-2.若x、y为两不等的整数,且满足1<<3,则x+y的值为( )
A.3 B.2 C. D.
7.不等式组无解,则a的取值范围是( )
A.a<1 B.a≤1 C.a>1 D.a≥1
8.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )
A.103块 B.104块 C.105块 D.106块
9.若关于x的不等式,整数解共有2个,则m的取值范围是
A. B. C. D.
10.关于x的分式方程+=-2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为( )
A.-16 B.-12 C.-10 D.-6
11.已知不等式,其解集在数轴上表示正确的是( )
A. B. C. D.
12.已知关于x的不等式组仅有三个整数解,则a的取值范围是( ).
A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1[来源:学科网]
13.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为( )
A. B. C.1 D.2
14.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程=1有整数解,则满足条件的所有a的值之和是( )
A.﹣10 B.﹣12 C.﹣16 D.﹣18
15.若方程组的解满足x<1,且y>1,则整数k的个数是( )
A.4 B.3
C.2 D.1
二、填空题
16.不等式组的非负整数解有_____个.
17.关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是______.
18.已知关于x的不等式组无解,则a的取值范围是_____.
19.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.
20.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.
21.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.
22.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)
①当x=1.7时,[x]+(x)+[x)=6;
②当x=﹣2.1时,[x]+(x)+[x)=﹣7;
③方程4[x]+3(x)+[x)=11的解为1<x<1.5;
④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.
23.当a、b满足条件a>b>0时,=1表示焦点在x轴上的椭圆.若=1表示焦点在x轴上的椭圆,则m的取值范围是 .
24.小王家鱼塘有可出售的大鱼和小鱼共800千克,大鱼每千克售价10元,小鱼每千克售价6元,若将这800千克鱼全部出售,收人可以超过6 800元,则其中售出的大鱼至少有多少千克?若设售出的大鱼为x千克,则可列式为________________________.
25.如果关于x的不等式组的所有整数解的和是-7,则m的取值范围是_______________;
26.某班数学兴趣小组对不等式组,讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是____.
27.不等式组的整数解是x= .
28.某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:
| A型 | B型 |
价格(万元/台) | 12 | 10 |
月污水处理能力(吨/月) | 200 | 160 |
设购买A种型号的污水处理设备x台.
(1)若企业最多支出89万元购买设备,请写出x应满足的不等式是______________________________;
(2)若企业还要求月处理污水能力不低于1 380吨,请写出x应满足的另一个不等式是_________________________________.
29.若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.
30.按如图所示的程序计算,若输入的值x=17,则输出的结果为22;若输入的值x=34,则输出的结果为22.当输出的值为24时,则输入的x的值在0至40之间的所有正整数是____.
三、解答题
31.已知关于x的方程3x﹣(2a﹣3)=5x+3(a+2)的解是非正数,求字母a的取值范围.
32.对非负实数x“四舍五入”到个位的值记为
即:当n为非负整数时,如果
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
(1)填空:①= (为圆周率);
②如果的取值范围为 ;
(2)①当;
②举例说明不恒成立;
(3)求满足的值;
(4)设n为常数,且为正整数,函数范围内取值时,函数值y为整数的个数记为的个数记为b.
求证:
33.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
34.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低。马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
品种[来源:学*科*网] | A | B |
原来的运费 | 45 | 25 |
现在的运费 | 30 | 20 |
(1)求每次运输的农产品中A,B产品各有多少件?
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?
35.解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.
36.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
37.为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
38.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y关于x的函数关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?
(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
39.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.
(1)求每台型、型净水器的进价各是多少元;
(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.
40.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品共50件.已知生产一件种产品需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件种产品需用甲种原料4千克,乙种原料10千克,可获利润1200元.
(1)设生产种产品件,完成表格:
| 产品 | 产品 |
生产数量(件 | 件 | 件 |
需甲种原料(千克) |
|
|
需乙种原料(千克)[来源:学科网ZXXK] | [来源:学科网ZXXK] |
|
(2)按要求安排、两种产品的件数有几种方案?请你设计出来.
(3)以上方案哪种利润最大?是多少元?
41.我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:
(1)= ,,= ;
(2)若=2,则的取值范围是 ;若=-1,则的取值范围是 ;
(3)已知,满足方程组,求,的取值范围.
42.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利l20元;生产2个甲种零件和5个乙种零件共获利l30元.
求生产1个甲种零件,l个乙种零件分别获利多少元?
若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2 800元,至少要派多少名工人去生产乙种零件?
43.若不等式组:的解集是5<x<22,求a,b的值.
44.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
45.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=
解决问题:[来源:学*科*网]
(1)填空:M{sin45°,cos60°,tan60°}=__________,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为__________;
(2)如果2•M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;
(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.
专题04 方程和不等式综合问题-决胜2022中考数学压轴题全揭秘精品(原卷版): 这是一份专题04 方程和不等式综合问题-决胜2022中考数学压轴题全揭秘精品(原卷版),共11页。试卷主要包含了单选题,填空题,解答题,个位上的数字分别是等内容,欢迎下载使用。
专题03 不等式(组)问题-决胜2022中考数学压轴题全揭秘精品(解析版): 这是一份专题03 不等式(组)问题-决胜2022中考数学压轴题全揭秘精品(解析版),共33页。试卷主要包含了给出下列5个命题,不等式组无解,则a的取值范围是等内容,欢迎下载使用。
专题02 方程(组)问题-决胜2022中考数学压轴题全揭秘精品(原卷版): 这是一份专题02 方程(组)问题-决胜2022中考数学压轴题全揭秘精品(原卷版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。