清单37 随机事件的概率与古典概型(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练
展开
这是一份清单37 随机事件的概率与古典概型(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共12页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。
清单37 随机事件的概率与古典概型一、知识与方法清单1.事件的相关概念【对点训练1】将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( )A.必然事件 B.随机事件C.不可能事件 D.无法确定2.概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).(3)频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.【对点训练2】给出下列三个命题.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1.其中正确的命题有________个.3.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.【对点训练3】某保险公司利用简单随机抽样的方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01000200030004000车辆数(辆)500130100150120 ①若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;②在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.【对点训练4】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4C.0.6 D.0.75.事件的关系与运算 定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件(A∩B=∅),则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅,P(A)+P(B)=1 【对点训练5】互斥事件与对立事件一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.6.判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,“互斥”是“对立”的必要不充分条件.【对点训练6】一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )A.至多有一次中靶 B.两次都中靶C.只有一次中靶 D.两次都不中靶7.概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).【对点训练7】围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率为.则从中任意取出2粒恰好是同一颜色的概率为( )A. B.C. D.18.对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【对点训练8】抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为( )A. B.C. D.9.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).【对点训练9】经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:①至多2人排队等候的概率;②至少3人排队等候的概率.10.求互斥事件的概率的方法(1)直接法(2)间接法(正难则反)【对点训练10】一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为,取得两个绿玻璃球的概率为,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.11.求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法①将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.②若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.【对点训练11】某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2018年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9]发放金额50100150200(1)求这1 000名购物者获得优惠券金额的平均数;(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.12.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.【对点训练12】从1,2,3,4,5中随机取出三个不同的数,则其和为偶数的基本事件个数为( )A.4 B.5C.6 D.713.确定基本事件个数的三种方法(1)列举法:此法适合基本事件较少的古典概型.(2)列表法(坐标法):此法适合多个元素中选定两个元素的试验.(3)树状图法:适合有顺序的问题及较复杂问题中基本事件个数的探求.【对点训练13】分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )14.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.【对点训练14】(多选)下列试验是古典概型的是( )A.在适宜的条件下种一粒种子,发芽的概率B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球为白球的概率C.向一个圆面内部随机地投一个点,该点落在圆心的概率D.老师从甲、乙、丙三名学生中任选两人做典型发言,甲被选中的概率15.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.【对点训练15】某校新生分班,现有A,B,C三个不同的班,甲和乙同学将被分到这三个班,每个同学分到各班的可能性相同,则这两名同学被分到同一个班的概率为( )A. B. C. D.16.古典概型的概率公式P(A)=.古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.【对点训练16】某区要从参加扶贫攻坚任务的名干部甲、乙、丙、丁、戊中随机选取人,赴区属的某贫困村进行驻村扶贫工作,则甲或乙被选中的概率是( )A. B. C. D.17.古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A)=,求出事件A的概率.求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,在列举基本事件空间时,可以利用列举、画树状图等方法,以防遗漏.同时要注意细节,如用列举法,注意是无序还是有序.在解答时,缺少必要的文字说明,没有按要求列出基本事件是常见错误.【对点训练17】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.①若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;②若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.18.频率的计算公式与古典概型的概率计算公式的异同名称不同点相同点频率计算公式频率计算中的m,n均随随机试验的变化而变化,但随着试验次数的增多,它们的比值逐渐趋近于概率值都计算了一个比值古典概型的概率计算公式是一个定值,对同一个随机事件而言,m,n都不会变化【对点训练18】两名学生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是.”若每个参加面试的人被招聘的可能性相同,则根据这位负责人的话,可以推断出参加面试的人数为______.二、跟踪检测一、单选题1.(2022届湖南省郴州市高三上学期月考)食用油有两种制取工艺:压榨法和浸出法.压榨法由于不涉及添加任何化学物质,榨出的油各种成分保持较为完整,但缺点是出油率低;浸出法制油粕中残油少,出油率高,油料资源得到了充分的利用.我国植物油料种类繁多,而压榨法和浸出法这两种油脂制取工艺分别适用于不同的油料,常见的采用压榨油的有芝麻油、花生油等,常见的采用浸出油的有油菜籽油,大豆油等.现有4个完全相同的不透明油桶里面分别装有芝麻油、花生油、油菜籽油、大豆油,从中任取一桶,则下列两个事件互为对立事件的是( )A.“取出芝麻油”和“取出花生油” B.“取出浸出油”和“取出大豆油”C.“取出油菜籽油”和“取出大豆油” D.“取出压榨油”和“取出浸出油”2.(2022届四川省成都市高三上学期考试)在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了40次,那么出现正面朝上的频率和概率分别为( )A.0.4,0.4 B.0.5,0.5 C.0.4,0.5 D.0.5,0.43.(2022届重庆市南开中学高三上学期考试)在一次试验中,随机事件A,B满足,则( )A.事件A,B一定互斥 B.事件A,B一定不互斥C.事件A,B一定互相独立 D.事件A,B一定不互相独立4.(2022届吉林省吉林市高三上学期月考)小王同学有三支款式相同、颜色不同的圆珠笔,每支圆珠笔都有一个与之同颜色的笔帽,平时 小王都将笔杆和笔帽套在一起,但偶尔也会将笔杆和笔帽随机套在一起,则小王将两支笔的笔杆和笔帽的颜色混搭的概率是( )A. B. C. D.5.(2022届广西全州县高三测试)向上抛一枚均匀的正方体骰子3次,向上点数记为,点数之和正好等于5的概率为( )A. B. C. D.6.(2022届新疆克拉玛依市高三第三次模拟检测)“辽宁舰”是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,在“辽宁舰”的飞行甲板后部有四条拦阻索,降落的飞行员须捕捉钩挂上其中一条,则为“成功着陆”,舰载机白天挂住第一条拦阻索的概率为18%,挂住第二条、第三条拦阻索的概率为62%,捕捉钩未挂住拦阻索需拉起复飞的概率约为5%,现有一架歼15战机白天着舰演练20次均成功,则其被第四条拦阻索挂住的次数约为( )A.5 B.3 C.2 D.47.(2022届河南省郸城县高三模拟)某同学做立定投篮训练,共场,每场投篮次数和命中的次数如表中记录板所示. 第一场第二场第三场投篮次数投中次数根据图中的数据信息,该同学场投篮的命中率约为( )A. B. C. D.8.(2021届广东省佛山高三上学期调研)要将甲、乙、丙、丁4名同学分到A、B、C三个班级中,要求每个班级至少分到一人,则甲被分到A班级的概率为( )A. B. C. D.9.(2022届】广西南宁高三11月教学质量检测)哥尼斯堡“七桥问题”是著名的古典数学问题,它描述的是:在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图1).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?瑞士数学家欧拉于1736年研究并解决了此问题,他把该问题归结为如图2所示的“一笔画”问题,并证明了上述走法是不可能的.假设在图2所示七条线中随机选取两条不同的线,则这两条线都与A直接相连的概率为( )A. B. C. D.10.(2021届广东省中山纪念中学等四校高三下学期5月联考)为提高学生的身体素质,加强体育锻炼,高三(1)班A,B,C三位同学进行足球传球训练,约定:球在某同学脚下必须传出,传给另外两同学的概率均为,不考虑失球,球刚开始在A同学脚下,经过5次传球后,球回到A同学脚下的概率为( )A. B. C. D.11.(2022届河北省邢台市高三上学期联考)8个人排成两排,每排4人,则甲、乙不同排的概率为( )A. B. C. D.12.某地一重点高中为让学生提高遵守交通的意识,每天都派出多名学生参加与交通相关的各类活动.现有包括甲、乙两人在内的6名中学生,自愿参加交通志愿者的服务工作这6名中学生中2人被分配到学校附近路口执勤,2人被分配到医院附近路口执勤,2人被分配到中心市场附近路口执勤,如果分配去向是随机的,则甲、乙两人被分配到同一路口的概率是( )A. B. C. D.二、多选题13.下列概率模型是古典概型的为A.从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小B.同时抛两枚质地均匀的骰子,点数和为6的概率C.近三天中有一天降雨的概率D.10人站成一排,其中甲,乙相邻的概率14.(2022届湖北省部分重点中学高三上学期期中)抛掷一颗质地均匀的骰子一次,记事件M为“向上的点数为1或4”,事件N为“向上的点数为奇数”,则下列说法正确的是( )A.M与N互斥但不对立 B.M与N对立C. D.15.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”、“日落云里走,雨在半夜后” ……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天日落情况和后半夜天气,得到如下列联表,日落云里走后半夜天气总计下雨未下雨出现25530未出现254570总计5050100并计算得到,下列小波对该地区天气的判断正确的是( )A.后半夜下雨的概率约为B.未出现“日落云里走”时,后半夜下雨的概率约为C.在犯错误的概率不超过0.001的前提下,可以认为““日落云里走’是否出现”与“后半夜是否下雨”有关D.根据的独立性检验,若出现“日落云里走”,则后半夜有99.9%的可能会下雨16(2022届山东省潍坊高三上学期检测)已知甲袋中有5个大小相同的球,4个红球,1个黑球;乙袋中有6个大小相同的球,4个红球,2个黑球,则( )A.从甲袋中随机摸出一个球是红球的概率为B.从乙袋中随机摸出一个球是黑球的概率为C.从甲袋中随机摸出2个球,则2个球都是红球的概率为D.从甲、乙袋中各随机模出1个球,则这2个球是一红球一黑球的概率为17.根据中国古代重要的数学著作《孙子算经》记载,我国古代诸侯的等级自低到高分为:男、子、伯、侯、公五个等级,现有每个级别的诸侯各一人,君王要把50处领地全部分给5位诸侯,要求每位诸侯都分到领地且级别每高一级就多分处(为正整数),按这种分法,下列结论正确的是( )A.为“男”的诸侯分到的领地不大于6处的概率是B.为“子”的诸侯分到的领地不小于6处的概率是C.为“伯”的诸侯分到的领地恰好为10处的概率是1D.为“公”的诸侯恰好分到16处领地的概率是18.如图,在某城市中,、两地之间有整齐的方格形道路网,其中、、、是道路网中位于一条对角线上的个交汇处.今在道路网、处的甲、乙两人分别要到、处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达、处为止.则下列说法正确的是( )A.甲从到达处的方法有种B.甲从必须经过到达处的方法有种C.甲、乙两人在处相遇的概率为D.甲、乙两人相遇的概率为三、填空题19.(2022届上海市格致中学高三上学期期中)设集合,A中三个不同的元素组成的所有子集中,任取一个集合,这集合中三个元素和为偶数的概率为______.(结果用数值表示)20.一个盒子中装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,.现从盒子中逐一抽取卡片,且每次抽出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,设抽取次数为,则的概率为______.21.某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.四、解答题22.(2022届江苏省扬州市高三上学期测试)为丰富师生的课余文化生活,倡导“每一天健身一小时,健康生活一辈子”,深入开展健身运动,增强学生的身体素质和团队的凝聚力,某中学将举行趣味运动会.某班共有10名同学报名参加“四人五足”游戏,其中男同学6名,女同学4名.按照游戏规则,每班只能选4名同学参加这个游戏,因此要从这10名报名的同学中随机选出4名,记其中男同学的人数为.(1)求选出的4名同学中只有女生的概率;(2)求随机变量的分布列及数学期望.23.(2022届湖南省三湘名校、五市十校教研教改共同体高三上学期联考)随着应用型芯片不断使用7nm,甚至5nm技术,软件升级加快,电子产品更新换代周期在缩小.某手机专卖店对本店一直专卖的,两款手机进行跟踪调查.随机抽取了几年前本店同期售出的两款手机各20台,它们的使用时间(单位:年)如下表:使用时间(年)2345手机品牌(台)2864(台)2855(1)在这40台手机中,,两款手机各随机抽取一台,将频率视为概率,求这两台手机使用时间都不超过4年的概率;(2)在这40台使用时间超过3年的手机中随机抽取3台,这3台手机中使用4年的台数为,求的分布列和数学期望.
相关试卷
这是一份清单37 随机事件的概率与古典概型(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共22页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。
这是一份清单33 抛物线(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共12页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。
这是一份清单32 双曲线(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共13页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。