所属成套资源:高教版(中职)数学基础模块上册课件PPT整套
高教版(中职)基础模块上册1.3.2 并集集体备课ppt课件
展开这是一份高教版(中职)基础模块上册1.3.2 并集集体备课ppt课件
1.3.2集合的运算(并集)Set operation (Union)一、情景引入[情景1]2020新冠席卷全球,新冠感染者者甲去过的地方构成集合A={学校、餐厅、超市、体育馆},新冠感染者乙去过的地方构成集合B={电影院,超市,学校,广场},则高风险地区构成集合C?[提示]C={学校、餐厅、超市、体育馆、电影院、广场}问题1:集合A、B、C是什么样的关系?A={学校、餐厅、超市、体育馆}B={电影院,超市,学校,广场}C={学校、餐厅、超市、体育馆、电影院、广场}[提示] 集合C中的元素是由集合A、B的所有元素所组成的,这时,将C称作是A与B的并集.一、情景引入二、形成概念1.并集: 2.符号表示: (读作“A并B”) 3.用Venn图表示:注:(1)求两个并集关键在于列出两个集合所有的元素 (2)并运算的结果还是一个集合,所以要用集合表示二、形成概念 4.并集的性质: 请画图验证二、形成概念三、例题精讲例1 已知集合A,B,求A∪B.(1) A={1,2},B={2,3};(2) A={a , b},B={c, d , e , f };(3) A={1,3,5},B= ;(4) A={2,4},B={1,2,3,4}.解: (1) A∪B={1,2}∪{2,3}={1,2,3};(2) A∪B={a , b}∪{c , d , e , f }={a , b, c , d , e, f }; (3) 因为是不含任何元素的空集,所以A∪B={1,3,5}∪={1,3,5};(4) 集合A是集合B的真子集,A∪B={1,2,3,4}= B.【分析】 因为A∪B是由集合A和集合B的所有元素组成,当集合都是用列举法表示时,通过列举这两个集合的元素,可以得到并集,注意相同的元素只列举一次. 三、例题精讲 三、例题精讲 【点睛】对于不等式集合要用数轴来理解并集含义三、例题精讲问题2:集合的并集和交集有什么区别?(含义和符号) 思考探究问题3:在进行集合的并运算和交运算时各自的特点是什么?[提示]交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.问题4:集合用列举法和描述法表示时进行运算需要注意的问题是什么?[提示]列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理.思考探究四、巩固提高 【答案】D【分析】可画出Venn图或者数轴【详解】 四、巩固提高 四、巩固提高五、小结1.并集的概念及运算2.并集的描述法表示六、作业(1)读书部分: 教材章节1.3;(2)书面作业: 学习与训练1.3;谢谢Thank you
相关课件
这是一份数学基础模块上册(2021)1.3.2 并集备课课件ppt,共12页。PPT课件主要包含了学习目标,温馨提示,课堂小结等内容,欢迎下载使用。
这是一份高中数学高教版(中职)基础模块上册(2021)1.1.1 集合的概念授课课件ppt,共15页。PPT课件主要包含了学习目标,元素与集合间关系,课堂小结等内容,欢迎下载使用。
这是一份高中数学高教版(中职)基础模块上册1.3.3 补集多媒体教学ppt课件,共15页。PPT课件主要包含了情景引入,形成概念,例题讲解,思考问题,性质归纳,巩固提高等内容,欢迎下载使用。