所属成套资源:2022年中考数学三轮冲刺《四边形》解答题冲刺练习(含答案)
2022年中考数学三轮冲刺《四边形》解答题冲刺练习十(含答案)
展开
这是一份2022年中考数学三轮冲刺《四边形》解答题冲刺练习十(含答案),共6页。
2022年中考数学三轮冲刺《四边形》解答题冲刺练习十1.如图所示,在▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形. 2.已知□ABCD中,AC是对角线,BE平分∠ABC交AC于点E,DF平分∠ADC交AC于点F,求证:AE=CF. 3.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数. 4.如图,已知在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC. 5.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长. 6.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O,E,F分别在BD,BC,AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长. 7.如图,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF. 8.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值.
0.答案解析1.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.(2)证法1:∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.证法2:如图,连接AC,与BD相交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵BE=DF,∴OB﹣BE=OD﹣DF,∴OE=OF.∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形).2.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠ABC=∠CDA,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠CDF,∵AB∥CD,∴∠BAE=∠DCF在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF. 3. (1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°. 4.提示:取BE的中点P,证明四边形EFPC是平行四边形. 5.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ 6.解:(1)证明:过点O作OM⊥AB于点M,∵BD是∠ABC的平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∵OM⊥AB,OF⊥AD,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴解得∴OE=CE=CF=2. 7.证明:∵四边形ABCD是平行四边形,∴AB=CD,OA=OC.∴∠BAF=∠CEF,∠ABF=∠ECF.∵CE=DC,在平行四边形ABCD中,CD=AB,∴AB=CE.∴在△ABF和△ECF中,∠BAF=∠CEF,AB=CE,∠ABF=∠BCF∴△ABF≌△ECF(ASA),∴BF=CF.∵OA=OC,∴OF是△ABC的中位线,∴AB=2OF.8.(1)证明:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF;(2)解:∵将△BCF沿BF折叠,得到△BPF,∴FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,设QF=x,PB=BC=AB=4,CF=PF=2,∴QB=x,PQ=x﹣2,在Rt△BPQ中,∴x2=(x﹣2)2+42,解得:x=5,即QF=5.
相关试卷
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案),共8页。试卷主要包含了求线段BF的长,AE=1,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案),共7页。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案),共7页。