所属成套资源:2022年中考数学三轮冲刺《四边形》解答题冲刺练习(含答案)
2022年中考数学三轮冲刺《四边形》解答题冲刺练习一(含答案)
展开
这是一份2022年中考数学三轮冲刺《四边形》解答题冲刺练习一(含答案),共6页。试卷主要包含了5BC.等内容,欢迎下载使用。
2022年中考数学三轮冲刺《四边形》解答题冲刺练习一1.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形. 2.如图,在□ABCD中,E,F分别在AD,BC边上,且AE=CF. 求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形. 3.已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的. 4.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N(1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长. 5.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长. 6.如图,△ABC的中线BE,CF相交于点G,P,Q分别是BG,CG的中点.(1)求证:四边形EFPQ是平行四边形;(2)请直接写出BG与GE的数量关系: .(不要求证明)
7.如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想. 8.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)求EF的长;(2)求四边形ABCE的面积.
0.答案解析1.(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∴∠AFB=180°﹣108°﹣36°=36°,∴AB=AF,∵AF=EF,∴△ABF和△AFE是等腰三角形,同理△EFC与△CDE是等腰三角形. 2.证明: (1)∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C.在△ABE与△CDF中, ∴△ABE≌△CDF(SAS).(2) ∵四边形ABCD是平行四边形,∴AD=BC且AD∥BC. ∵AE=CF,∴DE=BF. 又DE∥BF, ∴四边形BFDE是平行四边形. 3.解:(1)∵四边形ABCD为矩形∴AB∥CD且AB=CD∴∠ABE=∠CDF∵AE⊥BD ∴∠AEB=90°∵CE⊥BD ∴∠CFD=90°∴△ABE≌△CDF(AAS)∴AE=CF.(2)△AFD,△ABE,△BEC,△FDC. 4.(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1. 5.解:(1)GF=GC.理由如下:连接GE,∵E是BC的中点,∴BE=EC, ∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC, ∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°, ∵在Rt△GFE和Rt△GCE中,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x, 在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=4/3. 6.(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=0.5BC. ∵P,Q分别是BG,CG的中点,∴PQ是△BCG的中位线,∴PQ∥BC且PQ=0.5BC, ∴EF∥PQ且EF=PQ.∴四边形EFPQ是平行四边形. (2)BG=2GE. 7.解:(1)PB=PQ.证明:连接PD,∵四边形ABCD是正方形,∴∠ACB=∠ACD,∠BCD=90°,BC=CD,又∵PC=PC,∴△DCP≌△BCP(SAS),∴PD=PB,∠PBC=∠PDC,∵∠PBC+∠PQC=180°,∠PQD+∠PQC=180°,∴∠PBC=∠PQD,∴∠PDC=∠PQD,∴PQ=PD,∴PB=PQ(2)PB=PQ.证明:连接PD,同(1)可证△DCP≌△BCP,∴PD=PB,∠PBC=∠PDC,∵∠PBC=∠Q,∴∠PDC=∠Q,∴PD=PQ,∴PB=PQ. 8.解:(1)设EF=x依题意知:△CDE≌△CFE,∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC==10,∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5,∴S梯形ABCE==(5+8)×6÷2=39.
相关试卷
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案),共8页。试卷主要包含了求线段BF的长,AE=1,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案),共7页。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案),共7页。