高考专题2 培优点7 三角函数中的范围、最值问题(学生版)
展开以三角函数为背景的范围与最值问题是高考的热点,对问题的准确理解和灵活转化是解题的关键.
【典例】1 (1)若函数y=sin2x+acs x+eq \f(5,8)a-eq \f(3,2)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上的最大值是1,则实数a的值为________.
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若3acs C+b=0,则tan B的最大值是________.
【典例】2 (1)(2020·烟台模拟)将函数f(x)=cs x的图象向右平移eq \f(2π,3)个单位长度,再将各点的横坐标变为原来的eq \f(1,ω)(ω>0),得到函数g(x)的图象,若g(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上的值域为eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(1,2),1)),则ω的取值范围为( )
A.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(4,3),\f(8,3))) B.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),\f(5,3))) C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(4,3),+∞)) D.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(8,3),+∞))
(2)若将函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))的图象向右平移φ个单位长度,所得图象关于y轴对称,则φ的最小正值是________.
【方法总结】
(1)求解三角函数的范围或最值的关键在于根据题目条件和函数形式选择适当的工具:三角函数的有界性,基本不等式,二次函数等.
(2)求解和三角函数性质有关的范围、最值问题,要结合三角函数的图象.
INCLUDEPICTURE "E:\\周飞燕\\2020\\二轮\\跟踪演练.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\周飞燕\\2020\\二轮\\数学\\wrd\\跟踪演练.TIF" \* MERGEFORMATINET 【拓展训练】
1.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象关于直线x=eq \f(π,3)对称,且f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)))=0,则ω的最小值为( )
A.2 B.4 C.6 D.8
2.若函数f(x)=2sin x+cs x在[0,α]上是增函数,则当α取最大值时,sin 2α的值等于( )
A.eq \f(4,5) B.eq \f(3,5) C.eq \f(2,5) D.eq \f(\r(21),5)
3.已知函数f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,6)))中x在任意的eq \f(1,5)个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________.
4.已知函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,3)))(ω>0),若f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(2π,3)))上恰有两个零点,且在eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,4),\f(π,24)))上单调递增,则ω的取值范围是________.
微专题9 数列中的最值、范围问题: 这是一份微专题9 数列中的最值、范围问题,共5页。
微专题9 数列中的最值、范围问题: 这是一份微专题9 数列中的最值、范围问题,共6页。试卷主要包含了基本技能练,创新拓展练等内容,欢迎下载使用。
椭圆中的参数范围及最值问题 试卷(学生及教师版): 这是一份椭圆中的参数范围及最值问题 试卷(学生及教师版),文件包含椭圆中的参数范围及最值问题教师版pdf、椭圆中的参数范围及最值问题学生版pdf等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。