开学活动
搜索
    上传资料 赚现金

    2021-2022学年山西省大同市阳高县七年级(下)第一次月考数学试卷(含解析)

    2021-2022学年山西省大同市阳高县七年级(下)第一次月考数学试卷(含解析)第1页
    2021-2022学年山西省大同市阳高县七年级(下)第一次月考数学试卷(含解析)第2页
    2021-2022学年山西省大同市阳高县七年级(下)第一次月考数学试卷(含解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山西省大同市阳高县七年级(下)第一次月考数学试卷(含解析)

    展开

    这是一份2021-2022学年山西省大同市阳高县七年级(下)第一次月考数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
     2021-2022学年山西省大同市阳高县七年级(下)第一次月考数学试卷副标题题号总分得分      一、选择题(本大题共10小题,共30.0分)年,中国举办第二十四届冬季奥林匹克运动会,如图,通过平移吉祥物“冰墩墩”可以得到的图形是A.
    B.
    C.
    D. 的相反数是A.  B.  C.  D. 下列各式中,正确的是A.  B.  C.  D. 如图,给出了过直线外一点画已知直线的平行线的方法,其依据是
    A. 同位角相等,两直线平行 B. 内错角相等,两直线平行
    C. 同旁内角互补,两直线平行 D. 两直线平行,同位角相等下列说法不正确的是A. 的平方根是 B. 的一个平方根
    C. 的算术平方根是 D. 没有平方根如图,在四边形中,连接,若要使,则需要添加的条件是
    A.  B.  C.  D. 下列语句:点到直线的垂线段叫做点到直线的距离;内错角相等;两点之间线段最短;过一点有且只有一条直线与已知直线平行;在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.其中正确的有A.  B.  C.  D. 有个数值转换器,程序原理如图.

    当输入时,输出的值是A.  B.  C.  D. ,则的值为A.  B.  C.  D. 如图,将矩形纸条折叠,折痕为,折叠后点分别落在点处,交于点已知,则的度数是
    A.  B.  C.  D.  二、填空题(本大题共5小题,共15.0分)把命题“对顶角相等”改写成“如果那么”的形式:______的平方根是______的算术平方根是______如图,计划把河水引到水池中,先作,垂足为,然后沿开渠,能使所开的渠道最短,这样设计的依据是______
      请你观察思考下列计算过程:

    同样:
    ______

    由此猜想:______如图,平分,则______度.

        三、解答题(本大题共8小题,共75.0分)计算:








     如图,直线相交于点平分,若,求的度数.







     如图,点的边上的一点.
    过点的垂线,垂足为
    过点的垂线,交于点
    线段的长度是点______ 的距离,______ 是点到直线的距离.因为直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段这三条线段大小关系是______ 用“”号连接







     如图,点分别在上,均与相交,
    求证:
      






     已知的立方根是的算术平方根是的整数部分.
    的值;         
    的平方根.






     小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的她不知能否裁得出来,正在发愁小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?






     阅读下列推理过程,在括号中填写理由.
    如图,已知,垂足分别为
    试说明:
    解:已知
    ______
    ______
    ____________
    已知
    ____________
    __________________
    ______






     问题情境
    我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.
    已知三角板中,,长方形中,
    问题初探
    如图,若将三角板的顶点放在长方形的边上,相交于点于点,求的度数.
    分析:过点则有,从而得,从而可以求得的度数.
    由分析得,请你直接写出:的度数为______的度数为______
    类比再探
    若将三角板按图所示方式摆放不垂直,请你猜想写的数量关系,并说明理由.
    请你总结解决问题的思路,在图中探究的数量关系?并说明理由.








    答案和解析 1.【答案】
     【解析】【解析】解:根据平移的性质,通过平移吉祥物“冰墩墩”可以得到的图形是
    故选:
    根据平移的性质进行判断.
    本题考查了平移的性质:平移前后两图形的形状和大小完全相同、各个部分的方向不会变.
     2.【答案】
     【解析】解:的相反数是
    故选:
    根据相反数的定义进行求解即可.
    本题考查实数的性质,熟练掌握实数相反数的求法是解题的关键.
     3.【答案】
     【解析】解:、原式,所以选项错误;
    B、原式,所以选项错误;
    C、原式,所以选项正确;
    D、原式,所以选项错误.
    故选:
    根据算术平方根的定义对进行判断;根据平方根的定义对进行判断;根据立方根的定义对进行判断;根据算术平方根对进行判断.
    本题主要考查了平方根,算术平方根和立方根的知识,熟记概念是关键.
     4.【答案】
     【解析】解:
    同位角相等,两直线平行
    故选A
    作图时保持,则可判定两直线平行.
    本题主要考查了平行线的判定.平行线的判定方法有:定理:同位角相等,两直线平行;
    定理:内错角相等,两直线平行;
    定理:同旁内角互补,两直线平行;
    定理:两条直线都和第三条直线平行,那么这两条直线平行;
    定理:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.
     5.【答案】
     【解析】解:的平方根是,故A正确,与要求不符;
    的一个平方根,故B正确,与要求不符;
    的算术平方根是,故C错误,与要求相符;
    负数没有平方根,故D正确,与要求不符.
    故选:
    依据平方根、算术平方根的性质解答即可.
    本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.
     6.【答案】
     【解析】 【分析】
    此题主要考查了平行线的判定,正确把握平行线的判定方法是解题关键.利用平行线的判定定理,对选项逐个分析,即可得出答案.
    【解答】
    解:、当时,,故此选项错误;
    B、当时,无法判定,故此选项错误;
    C、当时,无法判定,故此选项错误;
    D、当时,内错角相等,两直线平行,,故此选项正确.
    故选:  7.【答案】
     【解析】 【分析】
    本题考查了点到直线的距离的定义、平行线的性质、线段的性质等知识,难度不大.利用点到直线的距离的定义、平行线的性质、线段的性质等知识分别判断后即可确定正确的选项.
    【解答】
    解:点到直线的垂线段的长度叫做点到直线的距离,故错误;
    两直线平行,内错角相等,故错误;
    两点之间线段最短,正确;
    过直线外一点有且只有一条直线与已知直线平行,错误;
    在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,
    正确的有个.  8.【答案】
     【解析】解:将代入得:
    代入得:
    则输出的值为:
    故选:
    的值代入数值转化器计算即可得到结果.
    此题考查了立方根和无理数的概念,熟练掌握立方根和无理数的定义是解本题的关键.
     9.【答案】
     【解析】解:由题意得,
    解得,

    故选:
    根据非负数的性质列出算式,求出的值,计算即可.
    本题考查的是非负数的性质,掌握当几个非负数相加和为时,则其中的每一项都必须等于是解题的关键.
     10.【答案】
     【解析】解:矩形纸条中,


    由折叠可得,
    故选:
    依据平行线的性质,即可得到的度数,再根据折叠的性质,即可得出的度数.
    本题主要考查了平行线的性质,折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
     11.【答案】如果两个角是对顶角,那么这两个角相等.
     【解析】 【分析】
    命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.
    本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.
    【解答】
    解:题设为:对顶角,结论为:相等,
    故写成“如果那么”的形式是:如果两个角是对顶角,那么这两个角相等,
    故答案为:如果两个角是对顶角,那么这两个角相等.  12.【答案】 
     【解析】解:
    的平方根是

    的算术平方根是
    故答案为:
    利用平方根与算术平方根的意义解答即可.
    本题主要考查了平方根与算术平方根的意义,正确应用平方根与算术平方根的意义是解题的关键.
     13.【答案】连接直线外一点与直线上所有点的连线中,垂线段最短
     【解析】 【分析】
    本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.
    过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.
    【解答】
    解:根据连接直线外一点与直线上所有点的连线中,垂线段最短,
    沿开渠,能使所开的渠道最短.
    故答案为连接直线外一点与直线上所有点的连线中,垂线段最短.  14.【答案】 
     【解析】解:

    同样:




    由此猜想:
    故答案为:
    首先可观察已知等式,发现规律结果中,的个数与其中间的数字相同,由此即可写出最后结果.
    此题主要考查了算术平方根的应用,此题注意要善于观察已有式子得出规律,从而写出最后结果.
     15.【答案】
     【解析】解:



    平分




    故答案为:
    根据两直线平行,同旁内角互补求出,再求出,然后根据角平分线的定义求出,再利用两直线平行,内错角相等可得
    本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.
     16.【答案】解:







     【解析】首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.
    首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.
    此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
     17.【答案】解:平分





     【解析】利用角平分线定义可得,然后根据垂直定义可得,进而可得的度数.
    此题主要考查了垂线,以及角平分线的定义,关键是掌握角平分线把这个角分成相等的两个角.
     18.【答案】直线;线段的长度;
     【解析】解:所画图形如下所示;

    线段的长度是点到直线的距离,线段的长度是点到直线的距离,
    根据垂线段最短可得:
    故答案为:直线,线段的长度,
    过点即可;
    过点即可;
    利用点到直线的距离可以判断线段的长度是点的距离,是点到直线的距离,线段这三条线段大小关系是
    本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.
     19.【答案】证明:






     【解析】根据对顶角的性质得到的条件,然后根据平行线的性质得到,根据,则得到,进而得出
    此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
     20.【答案】解:的立方根是的算术平方根是


    的整数部分,
    代入得:
    的平方根是
     【解析】直接利用立方根以及算术平方根的定义得出,通过估算得到的值;
    利用中所求,代入求出答案.
    此题主要考查了估算无理数的大小以及算术平方根和立方根,正确把握相关定义是解题关键.
     21.【答案】解:不同意,小丽不能裁出纸片.
    因为正方形的面积为,故边长为
    设长方形的宽为,则长为
    长方形面积,解得
    长为
    即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.
     【解析】先求得正方形的边长,然后设长方形的宽为,则长为,然后依据长方形的面积为列方程求得的值,从而得到长方形的边长,从而可作出判断.
    本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
     22.【答案】垂直的定义  同位角相等,两直线平行    两直线平行,同旁内角互补    同角的补角相等      内错角相等,两直线平行  两直线平行,同位角相等
     【解析】解:已知
    垂直的定义
    同位角相等,两直线平行
    两直线平行,同旁内角互补
    已知
    同角的补角相等
    内错角相等,两直线平行
    两直线平行,同位角相等
    故答案为:垂直的定义;同位角相等,两直线平行;;两直线平行,同旁内角互补;;同角的补角相等;;内错角相等,两直线平行;两直线平行,同位角相等.
    根据平行线的性质、判定及垂直、互补等相关概念、定理填空即可.
    本题考查平行线的性质、判定及相关推理,解题的关键是掌握平行线性质定理、判定定理及垂直、补角等概念.
     23.【答案】 
     【解析】解:由题可得,

    故答案为:
    ,理由:
    证明:如图,

    ,则




    ,理由:
    证明:如图,

    ,则




    过点,则,这样就将转化为转化为,从而可以求得的度数;
    ,依据平行线的性质,即可得到内错角相等,进而得出
    ,依据平行线的性质,即可得到内错角相等,进而得出
    本题主要考查了平行线的性质,解决问题的关键是作辅助线构造内错角,利用平行线的性质进行推算.
     

    相关试卷

    2023-2024学年山西省大同市平城区两校联考八年级(下)月考数学试卷(含解析):

    这是一份2023-2024学年山西省大同市平城区两校联考八年级(下)月考数学试卷(含解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年山西省大同市云冈区七年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年山西省大同市云冈区七年级(下)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年山西省大同市七年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年山西省大同市七年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map