专题15:全等三角线中的辅助线做法及常见题型之等腰旋转-备战2022中考数学解题方法系统训练(全国通用)(含答案解析)
展开专题15:第三章 全等三角形中的辅助线的做法及常见题型之等腰旋转
一、单选题
1.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是( )
A.4 B.2 C.1 D.
二、填空题
2.已知:如图,四边形ABCD是边长为1的正方形,对角线AC、BD相交于点O.过点O作一直角∠MON,直角边OM、ON分别与OA、OB重合,然后逆时针旋转∠MON,旋转角为θ(0°<θ<90°),OM、ON分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是________(填序号).
①;②S四边形OEBF:S正方形ABCD=1:2;③;④OG•BD=AE2+CF2;⑤在旋转过程中,当△BEF与△COF的面积之和最大时,.
3.已知直角三角形ABC,∠ABC=90°,AB=3,BC=5,以AC为边向外作正方形ACEF,则这个正方形的中心O到点B的距离为______.
4.如图,折线中,,,将折线绕点按逆时针方向旋转,得到折线,点的对应点落在线段上的点处,点的对应点落在点处,连接,若,则_____°.
三、解答题
5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于点D,试说明:BF=2CD.
6.如图(a),(b),(c)所示,点E、D分别是正、正四边形ABCM,正五边形ABCMN中以C点为顶点的相邻两边上的点,且,DB交AE于点P.
(1)在图(a)中,求的度数.
(2)在图(b)中,的度数为________,图(c)中,的度数为________.
(3)根据前面探索,你能否将本题推广到一般的正n边形情况.若能,写出推广问题和结论;若不能,请说明理由.
7.(1)操作发现:将等腰与等腰按如图1方式叠放,其中,点,分别在,边上,为的中点,连结,.小明发现,你认为正确吗?请说明理由.
(2)思考探究:小明想:若将图1中的等腰绕点沿逆时针方向旋转一定的角度,上述结论会如何呢?为此进行以下探究:
探究一:将图1中的等腰绕点沿逆时针方向旋转(如图2),其他条件不变,发现结论依然成立.请你给出证明.
探究二:将图1中的等腰绕点沿逆时针方向旋转(如图3),其他条件不变,则结论还成立吗?请说明理由.
8.已知在中,,点D是BC上的任意一点,探究与的关系,并证明你的结论.
9.如图所示,等腰直角中,,点在上,且,,.将绕点逆时针旋转,画出旋转后的图形,并求的长.
10.如图,在四边形ABCD中,∠C=60°,∠A=30°,CD=BC.
(1)求∠B+∠D的度数.
(2)连接AC,探究AD,AB,AC三者之间的数量关系,并说明理由.
(3)若BC=2,点E在四边形ABCD内部运动,且满足DE2=CE2+BE2,求点E运动路径的长度.
11.问题背景
如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAFα,连接EF,试探究:线段BE,DF,EF之间的数量关系.
(1)特殊情景
在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为______.
(2)类比猜想
类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.
(3)解决问题
如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE=45°,若BD,请直接写出DE的长.
12.如图,在线段AB上任取一点M()、把线段MB绕M点逆时针旋转90°至MC.连接AC,作AC的垂直平分线交AM于N点,此时AN、MN、BM为边的三角形是一个直角三角形,我们称点M,N是线段AB的勾股分割点.如下右图,已知:点M,N是线段AB的勾股分割点,,△ABC、△MND分别是以AB、MN为斜边的等腰直角三角形,且点C与点D在AB的同侧,若MN=3,连接CD,则CD=______.
13.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.
(1)若AB=12,BE=3,求EF的长;
(2)求∠EOF的度数;
(3)若OE=OF,求的值.
参考答案
1.C
【解析】
【分析】
根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.
【详解】
解:∵四边形ABCD是正方形,
∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,
∴∠AOB=90°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠AOE=∠BOF,
∴△AOE≌△BOF(ASA),
∴△AOE的面积=△BOF的面积,
∴四边形AFOE的面积=正方形ABCD的面积=×22=1;
故选C.
【点睛】
本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.
2.①③④
【解析】
【分析】
①②③证明△BOE≌△COF,结合正方形的性质可判断;④证明,结合△BOE≌△COF的性质即可证得;⑤作OH⊥BC,表示出S△BEF+S△COF,即可判断.
【详解】
①∵四边形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
,
∴△BOE≌△COF(ASA),
∴OE=OF,BE=CF,
∴EF=OE;故①正确;
②∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,
∴S四边形OEBF:S正方形ABCD=1:4;故②错误;
③∴BE+BF=BF+CF=BC=OA;故③正确;
④∵
∴
∴
∴
∵
∴
∵在中,
∴
∴,故④正确;
⑤过点O作OH⊥BC,
∵BC=1,
∴OH=BC=,
设AE=,则BE=CF=1-,BF=,
∴S△BEF+S△COF=BE•BF+CF•OH=(1-)+(1-)×=-(-)2+,
∵<0,
∴当=时,S△BEF+S△COF最大;
即在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;故⑤错误;
故答案为①③④.
【点睛】
本题考查了正方形的性质,全等三角形的性质与判定,熟知以上知识点是解题的关键.
3.
【解析】
如图,延长BA到D,使AD=BC,连接OD,OA,OC,
∵四边形ACEF是正方形,∴∠AOC=90°,CO=AO,
∵∠ABC=90°,∠ABC+∠AOC=180°,
∴∠BCO+∠BAO=180°,∠BCO=∠DAO,
在△BCO与△DAO中,
∴△BCO≌△DAO(SAS),
∴OB=OD,∠BOC=∠DOA,∴∠BOD=∠COA=90°,
∴△BOD是等腰直角三角形,∴BD=,
∵BD=AB+AD=AB+BC=8,∴OB=.
故答案为.
4.
【解析】
【分析】
连接AC 、AE ,过点A作AF⊥BC于F ,作AH⊥EC于H.再证明四边形AFCH是矩形,可得AF=CH ,由旋转的性质可得AD=AB=3、BC=DE=5,∠ABC=∠ADE,则△ABC≌△ADE,即AC=AE ;再由等腰三角形的性质和勾股定理可得BF、AF、EC、CD的长,最后根据正切定义解答即可.
【详解】
解:如图:连接AC 、AE ,过点A作AF⊥BC于F ,作AH⊥EC于H.
∵CE⊥BC,AF⊥BC,AH⊥EC
∴四边形AFCH是矩形,
∴AF=CH,
∵将折线AB-BC绕点A按逆时针方向旋转,得到折线AD-DE
∴AD=AB=3、BC=DE=5,∠ABC=∠ADE
∴△ABC≌△ADE
∴AC=AE,
∵AC=AE,AB=AD,AF⊥BC,AH⊥EC,BF=DF,CH=EH
∴
∴
∴BF=,AF=
∴
∴
故答案为:2
【点睛】
本题考查了旋转的性质、矩形的判定和性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,根据题意求得EC、CD的长是解答本题的关键.
5.见解析
【解析】
【分析】
作BF的中点E,连接AE、AD,根据直角三角形得到性质就可以得出AE=BE=EF,由BD平分∠ABC就可以得出∠ABE=∠DBC=22.5°,从而可以得出∠BAE=∠BAE=∠ACD=22.5°,∠AEF=45°,由∠BAC=90°,∠BDC=90°就可以得出A、B、C、D四点共圆,求出AD=DC,证△ADC≌△AEB推出BE=CD,从而得到结论.
【详解】
解:取BF的中点E,连接AE,AD,
∵∠BAC=90°,
∴AE=BE=EF,
∴∠ABD=∠BAE,
∵CD⊥BD,
∴A,B,C,D四点共圆,
∴∠DAC=∠DBC,
∵BF平分∠ABC,
∴∠ABD=∠DBC,
∴∠DAC=∠BAE,
∴∠EAD=90°,
∵AB=AC,
∴∠ABC=45°,
∴∠ABD=∠DBC=22.5°,
∴∠AED=45°,
∴AE=AD,
在△ABE与△ADC中,
,
∴△ABE≌△ADC,
∴BE=CD,
∴BF=2CD.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,四点共圆,直角三角形的性质,角平分线的性质,正确的作出辅助线是解题的关键.
6.(1)证明见解析;(2),;(3)见解析
【解析】
【分析】
(1)根据SAS证明,得出,再根据计算得出的度数;
(2)方法与(1)相同;
(3)由(1)、(2)可得出规律:等于这个正n边形的一个内角的度数.
【详解】
(1)∵△ABC是正三角形,
∴AB=BC,∠ABE=∠C=,
在和中
,
∴,
∴.
∵,
∴.
∵,
∴.
(2)如图(b):
∵△ABCM是正四边形,
∴AB=BC,∠ABE=∠C=,
在和中
,
∴,
∴.
∵,
∴.
∵,
∴.
如图(c):
∵△ABCMN是正五边形,
∴AB=BC,∠ABE=∠C=,
在和中
,
∴,
∴.
∵,
∴.
∵,
∴.
(3)问题:如图(d)所示,点E,D分别是正n边形中以C点为顶点的相邻两边上的点,
且,DB交AE于P点.则等于这个正n边形的一个内角的度数,即.
【点睛】
考查了全等三角形的判定、性质和三角形外角的性质,解题关键是利用SAS方法求证三角形全等和三角形外角的性质.
7.(1)正确,理由见解析;(2)证明见解析;(3)成立,理由见解析
【解析】
【分析】
(1)连接DM并延长,作BN⊥AB,与DM的延长线交于N,连接CN,先证明△EMD≌△BMN,得到BN=DE=DA,再证明△CAD≌△CNB,得到CD=CN,证明△DCM是等腰直角三角形即可;
(2)探究一:延长DM交BC于N,根据平行线的性质和判定推出∠DEM=∠MBC,根据ASA推出△EMD≌△BMN,证出BN=AD,证明△CMD为等腰直角三角形即可;
探究二:作BN∥DE交DM的延长线于N,连接CN,根据平行线的性质求出∠E=∠NBM,根据ASA证△DCA≌△NCB,推出△DCN是等腰直角三角形,根据等腰直角三角形的性质即可推出△CMD为等腰直角三角形.
【详解】
解:(1)如图一,连接DM并延长,作BN⊥AB,与DM的延长线交于N,连接CN,
∵∠EDA=∠ABN=90°,
∴DE∥BN,
∴∠DEM=∠MBN,
∵在△EMD和△BMN中,
,
∴△EMD≌△BMN(ASA),
∴BN=DE=DA,MN=MD,
在△CAD和△CNB中,
,
∴△CAD≌△CNB,
∴CD=CN,
∴△DCN是等腰直角三角形,且CM是底边的中线,
∴CM⊥DN,
∴△DCM是等腰直角三角形,
∴DM=CM;
(2)探究一,
理由:如图二,连接DM并延长DM交BC于N,
∵∠EDA=∠ACB=90°,
∴DE∥BC,
∴∠DEM=∠MBC,
∵在△EMD和△BMN中,
,
∴△EMD≌△BMN(ASA),
∴BN=DE=DA,MN=MD
∵AC=BC,
∴CD=CN,
∴△DCN是等腰直角三角形,且CM是底边的中线,
∴CM⊥DM,∠DCM=∠DCN=45°=∠BCM,
∴△CMD为等腰直角三角形.
∴DM=CM;
探究二,
理由:如图三,连接DM,过点B作BN∥DE交DM的延长线于N,连接CN,
∴∠E=∠MBN=45°.
∵点M是BE的中点,
∴EM=BM.
∵在△EMD和△BMN中,
∴△EMD≌△BMN(ASA),
∴BN=DE=DA,MN=MD,
∵∠DAE=∠BAC=∠ABC=45°,
∴∠DAC=∠NBC=90°
∵在△DCA和△NCB中
,
∴△DCA≌△NCB(SAS),
∴∠DCA=∠NCB,DC=CN,
∴∠DCN=∠ACB=90°,
∴△DCN是等腰直角三角形,且CM是底边的中线,
∴CM⊥DM,∠DCM=∠DCN=45°=∠CDM,
∴△CMD为等腰直角三角形.
∴DM=CM
【点睛】
本题综合考查了等腰直角三角形,等腰三角形的性质和判定,平行线的性质和判定,全等三角形的性质和判定,此题综合性比较强,培养了学生分析问题和解决问题的能力,类比思想的运用,题型较好,难度较大.
8.
【解析】
【分析】
作AE⊥BC于E,可得BE=CE=BC,然后再使用勾股定理即可完成解答.
【详解】
. 证明如下:
如图:作AE⊥BC于E, 由题意得:ED=BE-BD=CD-CE,
在ABC中,∠BAC=90°,AB=AC,
∴BE=CE=BC,
由勾股定理可得:
即.
【点睛】
本题主要考查了全等三角形的判定和性质、勾股定理的知识,解题的关键是做辅助线构造直角三角形.
9.
【解析】
【分析】
将△CEB绕点C逆时针旋转90°,得到△ACE′,连结DE′,根据旋转的性质可得CE=C E′,AE′=BE,再求出△ADE′是直角三角形,然后勾股定理得出,再根据∠ACE′=∠BCE,∠CAE′=∠B=45°,然后求出∠DCE′=45°,从而得到∠DCE=∠DCE′,再利用“边角边”证明△E′CD≌△DCE,根据全等三角形对应边相等可得DE= DE′=,
【详解】
解:如图,由旋转性质知,
∴,即,
∴,
在中,,
∵,∠ECB=∠E′CA,
∴∠ECB+∠DCA=∠E′CA+ ∠DCA=∠E′CD=45°=∠DCE,
又∵E′C=CE,CD=CD
∴△E′CD≌△DCE,
∴DE= DE′=.
【点睛】
本题考查了作图−旋转变换,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,难度适中.准确作出旋转后的图形是解题的关键.
10.(1)∠D+∠B=270°;(2)AD2+AB2=AC2;理由见解析;(3)点E运动路径的长度是.
【解析】
【分析】
(1)利用四边形内角和定理计算即可;
(2)如图,将△ABC绕点C顺时针旋转60°,得到△QDC,连接AQ,证明∠QDA=90°,根据勾股定理可得结论;
(3)如图中,将△BCE绕C点顺时针旋转60°,得到△CDF,连接EF,想办法证明∠BEC=150°即可解决问题.
【详解】
(1)在四边形ABCD中,∠C=60°,∠A=30°,
∴∠D+∠B=360°-∠A-∠C=360°-60°-30°=270°.
(2)如图,将△ABC绕点C顺时针旋转60°,得到△QDC,连接AQ,
∴∠ACQ=60°,AC=CQ,AB=QD,
∴△ACQ是等边三角形,
∴AC=CQ=AQ,
由(1)知:∠ADC+∠B=270°,
∴∠ADC+∠CDQ=270°,
可得∠QDA=90°,
∴AD2+DQ2=AQ2,
∴AD2+AB2=AC2;
(3)将△BCE绕C点顺时针旋转60°,得到△CDF,连接EF,
∵CE=CF,∠ECF=60°,
∴△CEF是等边三角形,
∴EF=CE,∠CFE=60°,
∵DE2=CE2+BE2,
∴DE2=EF2+DF2,
∴∠DFE=90°,
∴∠CFD=∠CFE+∠DFE=60°+90°=150°,
∴∠CEB=150°,
则动点E在四边形ABCD内部运动,满足∠CEB=150°,以BC为边向外作等边△OBC,
则点E是以O为圆心,OB为半径的圆周上运动,运动轨迹为,
∵OB=BC=2,
则==.
点E运动路径的长度是.
【点睛】
本题考查四边形综合题、等边三角形的判定和性质、勾股定理以及逆定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
11.(1)BE+DF=EF;(2)成立;(3)DE
【解析】
【分析】
(1)将△ABE绕点A逆时针旋转90°,得到△ADG,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,根据∠EAF=∠BAD可得∠BAE+∠DAF=45°,即可得出∠∠EAF=∠FAG,利用SAS可证明△AFE≌△AFG,可得EF=FG,进而可得EF=BE+FD;(2)将△ABE绕点A逆时针旋转α得到△ADH,由旋转的性质可得∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,根据∠BAD=α,∠EAFα可得∠BAE+∠FADα,进而可证明∠FAH=∠EAF,利用SAS可证明△AEF≌△AHF,可得EF=FH=BE+FD;(3)将△AEC绕点A顺时针旋转90°,得到△AE′B,连接DE′,由旋转的性质可得BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,BC=4,即可求出∠E′BD=90°,利用SAS可证明△AEF≌△AHF,可得DE=DE′,利用勾股定理求出DE的长即可的答案.
【详解】
(1)BE+DF=EF,
如图1,将△ABE绕点A逆时针旋转90°,得到△ADG,
∵∠ADC=∠B=∠ADG=90°,
∴∠FDG=180°,即点F,D,G共线.
由旋转可得AE=AG,BE=DG,∠BAE=∠DAG.
∵∠BAE+∠DAF=∠BAD﹣∠EAF=90°﹣∠BAD=90°-45°=45°,
∴∠DAG+∠DAF=45°,即∠FAG=45°,
∴∠EAF=∠FAG,
∴△AFE≌△AFG(SAS),
∴EF=FG.
又∵FG=DG+DF=BE+DF,
∴BE+DF=EF,
故答案为BE+DF=EF.
(2)成立.
如图2,将△ABE绕点A逆时针旋转α得到△ADH,
可得∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH.
∵∠B+∠ADC=180°,
∴∠ADH+∠ADC=180°,
∴点C,D,H在同一直线上.
∵∠BAD=α,∠EAFα,
∴∠BAE+∠FADα,
∴∠DAH+∠FADα,
∴∠FAH=∠EAF,
又∵AF=AF,
∴△AEF≌△AHF(SAS),
∴EF=FH=DF+DH=DF+BE;
(3)DE,
如图3,将△AEC绕点A顺时针旋转90°,得到△AE′B,连接DE′.
可得BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,∵AB=AC=4,∠BAC=90°,
∴∠ABC=∠ACB=45°,BC=4,
∴CD=BC=BD=3,
∴∠ABC+∠ABE′=90°,即∠E′BD=90°,
∴E′B2+BD2=E′D2.
易证△AE′D≌△AED,
∴DE=DE′,
∴DE2=BD2+EC2,即DE2,
解得.
【点睛】
本题考查旋转的性质、全等三角形的判定与性质、勾股定理,旋转后不改变图形的大小和形状,并且对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角等于旋转角,熟练掌握旋转的性质及全等三角形的判定定理是解题关键.
12.
【解析】
【分析】
如图中,连接CM、CN,将△ACM绕点C逆时针旋转90°得△CBF,将△CDM绕点C逆时针旋转90°得△CFE只要证明四边形EFDN是平行四边形以及MN=NF就可以了.
【详解】
如图,连接CM、CN,将△ACM绕点C逆时针旋转90°得△CBF,将△CDM绕点C逆时针旋转90°得△CFE.
∵△ABC,△DMN都是等腰直角三角形,
∴∠DMN=∠A=45°,∠CBA=∠DNM=45°
∴DM∥AC,DN∥BC,
∴∠1=∠2=∠3=∠4,
∴EF∥BC,
∴EF∥BC∥ND,
∵DM=DN=EF,
∴四边形EFND是平行四边形,
∴ED=NF,
由∠NBF=∠FBC+∠CBA=90°
则=+,
点M,N是线段AB的勾股分割点,()
则=+,
又AM=BF,
可知MN=NF,
∴MN=ED,
在RT△CDE中,∵CD=CE,∠DCE=90°,
DE=CD,
MN=CD,
MN=3,
则CD==.
【点睛】
本题考查等腰三角形的性质、平行四边形的判定和性质等知识,利用旋转法添加辅助线是解决问题的关键.
13.(1)EF =5;(2)∠EOF=45°;(3).
【解析】
【分析】
(1)设BF=x,则FC=12-x,根据△EBF的周长等于BC的长得出EF=9-x,Rt△BEF中利用勾股定理求出x的值即可得;(2)在FC上截取FM=FE,连接OM.首先证明∠EOM=90°,再证明△OFE≌△OFM(SSS)即可解决问题;(3)证明∠FOC=∠AEO,结合∠EAO=∠OCF=45°可证△AOE∽△CFO得 ,推出AE=OC,AO=CF,由AO=CO,可得AE=×CF=CF,进而求解.
【详解】
(1)设BF=x,则FC=BC﹣BF=12﹣x,
∵BE=3,且BE+BF+EF=BC,
∴EF=9﹣x,
在Rt△BEF中,由BE2+BF2=EF2可得32+x2=(9﹣x)2,
解得:x=4,
则EF=9﹣x=5;
(2)如图,在FC上截取FM=FE,连接OM,
∵C△EBF的周长=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,
∴BE=MC,
∵O为正方形中心,
∴OB=OC,∠OBE=∠OCM=45°,
在△OBE和△OCM中,
∵,
∴△OBE≌△OCM,
∴∠EOB=∠MOC,OE=OM,
∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,
在△OFE与△OFM中,
∵,
∴△OFE≌△OFM(SSS),
∴∠EOF=∠MOF=∠EOM=45°.
(3)证明:由(2)可知:∠EOF=45°,
∴∠AOE+∠FOC=135°,
∵∠EAO=45°,
∴∠AOE+∠AEO=135°,
∴∠FOC=∠AEO,
∵∠EAO=∠OCF=45°,
∴△AOE∽△CFO.
∴,
∴AE=OC,AO=CF,
∵AO=CO,
∴AE=×CF=CF,
∴=.
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题.
初中数学中考复习 专题17:全等三角线中的辅助线做法及常见题型之双等腰旋转-备战2021中考数学解题方法系统训练(全国通用): 这是一份初中数学中考复习 专题17:全等三角线中的辅助线做法及常见题型之双等腰旋转-备战2021中考数学解题方法系统训练(全国通用),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题12:全等三角线中的辅助线做法及常见题型之截长补短-备战2022中考数学解题方法系统训练(全国通用)(含答案解析): 这是一份专题12:全等三角线中的辅助线做法及常见题型之截长补短-备战2022中考数学解题方法系统训练(全国通用)(含答案解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题09:全等三角线中的辅助线做法及常见题型之斜边上的中线-备战2022中考数学解题方法系统训练(全国通用)(含答案解析): 这是一份专题09:全等三角线中的辅助线做法及常见题型之斜边上的中线-备战2022中考数学解题方法系统训练(全国通用)(含答案解析),共14页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。