2022年九年级数学中考复习填空压轴题专题突破训练
展开
这是一份2022年九年级数学中考复习填空压轴题专题突破训练,共21页。
2.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为 .
3.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为 ,线段DH长度的最小值为 .
4.如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为 .
5.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k= .
6.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.
7.如图,已知A、B、C是⊙O上的三个点,且AB=15cm,AC=3cm,∠BOC=60度.如果D是线段BC上的点,且点D到直线AC的距离为2cm,那么BD= cm.
8.在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为 (计算结果不取近似值).
9.如图,已知⊙O的弦AB、CD相交于点P,PA=4,PB=3,PC=6,EA切⊙O于点A,AE与CD的延长线交于点E,AE=2,那么PE的长 .
10.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为 .
11.在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是 .
12.如图,正方形OABC的面积是4,点B在反比例函数y=(k>0,x<0)的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是 .(用含m的代数式表示)
13.如图,△ABC中,AD⊥BC于D,CE⊥AB于E,且BE=2AE,已知AD=,tan∠BCE=,那么CE= .
14.已知关于x的一元二次方程8x2+(m+1)x+m﹣7=0有两个负数根,那么实数m的取值范围是 .
15.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是 .
16.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为 .
17.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.
第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为 .
18.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:
第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为 ;
第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为 .
19.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则= .(用含m的代数式表示)
20.如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于二、四象限的A、B两点,与x轴交于C点.已知A(﹣2,m),B(n,﹣2),tan∠BOC=,则此一次函数的解析式为 .
21.已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为 cm.
22.如图,在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,点M、N在AB边上,且GH=DC,MN=AB.若AB=10,BC=12,则图中阴影部分面积和为 .
参考答案
1.解:法一:联立y=mx(m>0)与y=并解得:,故点A的坐标为(,2),
联立y=nx(n<0)与y=﹣同理可得:点D(,﹣),点B(﹣,),
或点B(,﹣),点D(﹣,),
∵这两条直线互相垂直,则mn=﹣1,
则AD2=(﹣)2+(2+)2=+5m,
同理可得:AB2=+5m=AD2=BC2=CD2,
则AB=×10,即AB2==+5m,
解得:m=2或,
故点A的坐标为(,2)或(2,),
法二:由反比例函数与正比例函数的交点关于原点对称,可得四边形的对角线相互平分,从而判定四边形ABCD为平行四边形,再有两条直线互相垂直,即四边形的对角线相互垂直可判定平行四边形ABCD 为菱形,所以四条边都相等,
接下来方法同上.
故答案为:(,2)或(2,).
2.解:∵在边长为1的菱形ABCD中,∠ABC=60°,
∴AB=CD=1,∠ABD=30°,
∵将△ABD沿射线BD的方向平移得到△A'B'D',
∴A′B′=AB=1,A′B′∥AB,
∵四边形ABCD是菱形,
∴AB=CD,AB∥CD,
∴∠BAD=120°,
∴A′B′=CD,A′B′∥CD,
∴四边形A′B′CD是平行四边形,
∴A′D=B′C,
∴A'C+B'C的最小值=A′C+A′D的最小值,
∵点A′在过点A且平行于BD的定直线上,
∴作点D关于定直线的对称点E,连接CE交定直线于A′,
则CE的长度即为A'C+B'C的最小值,
∵在Rt△AHD中,∵∠A′AD=∠ADB=30°,AD=1,
∴∠ADE=60°,DH=EH=AD=,
∴DE=1,
∴DE=CD,
∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,
∴∠E=∠DCE=30°,
∴CE=2×CD=.
故答案为:.
3.解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.
∵四边形ABCD是矩形,DF=CF,AE=EB,
∴四边形ADFE是矩形,
∴EF=AD=3,
∵FQ∥PE,
∴△MFQ∽△MEP,
∴=,
∵PE=2FQ,
∴EM=2MF,
∴EM=2,FM=1,
当点P与A重合时,PQ的值最大,此时PM===2,MQ===,
∴PQ=3,
∵MF∥ON∥BC,MO=OB,
∴FN=CN=1,DN=DF+FN=3,ON==2,
∴OD===,
∵BH⊥PQ,
∴∠BHM=90°,
∵OM=OB,
∴OH=BM=×=,
∵DH≥OD﹣OH,
∴DH≥﹣,由于M和B点都是定点,所以其中点O也是定点,当O,H,D共线时,此时DH最小,
∴DH的最小值为﹣,
故答案为3,﹣.
4.解:延长NF与DC交于点H,
∵∠ADF=90°,
∴∠A+∠FDH=90°,
∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,
∴∠A=∠DFH,
∴∠FDH+∠DFH=90°,
∴NH⊥DC,
设DM=4k,DE=3k,EM=5k,
∴AD=9k=DC,DF=6k,
∵tanA=tan∠DFH=,
则sin∠DFH=,
∴DH=DF=k,
∴CH=9k﹣k=k,
∵csC=csA==,
∴CN=CH=7k,
∴BN=2k,
∴=.
5.解:(方法一)设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),
∵AB===(b﹣a)=2,
∴b﹣a=2,即b=a+2.
∵点A′,B′均在反比例函数y=的图象上,
∴,
解得:k=﹣.
(方法二)∵直线y=﹣x+1上有两点A、B,且AB=2,
∴设点A的坐标为(a,﹣a+1),则点B的坐标为(a+2,﹣a﹣1),点A′的坐标为(,),点B′的坐标为(,﹣).
∵点A′,B′均在反比例函数y=的图象上,
∴,
解得:.
故答案为:﹣.
6.解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,
∵GF⊥AA′,
∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,
∴∠MGF=∠KAC′,
∴△AKC′≌△GFM,
∴GF=AK,
∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,
∴=,
∴=,
∴C′K=1cm,
在Rt△AC′K中,AK==cm,
∴FG=AK=cm,
故答案为.
7.解:作DE⊥AC于E,BF⊥AC于F
∵∠BOC=60°,∴∠A=30°
在Rt△ABF中,AB=15cm
∴BF=cm,AF=cm
∴CF=AF﹣AC=cm
在Rt△BCF中,BC==3cm
∵DE∥BF
∴=
设BD=x,则=
解得x=,即BD=cm.
8.解:当点M与A重合时,AT取最大值是6,
当点N与C重合时,由勾股定理得此时AT取最小值为8﹣=8﹣2.
所以线段AT长度的最大值与最小值之和为:6+8﹣2=14﹣2.
故答案为:14﹣2.
9.解:∵PA=4,PB=3,PC=6,
∴PD==2.
设DE=x.
∵EA切⊙O于点A,
∴EA2=ED•EC,
即x(x+8)=20,
x2+8x﹣20=0,
x=2,x=﹣10(负值舍去).
则PE=DE+PD=4.
10.解:①当BA=BP时,
则AB=BP=BC=8,即线段BC的长为8.
②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,
∴BD=DP,
在Rt△AEO中,AE=4,AO=5,
∴OE=3,
∵∠OAE=∠BAD,∠AEO=∠ADB=90°,
∴△AOE∽△ABD,
∴,
∴BD=,
∴BD=PD=,
即PB=,
∵AB=AP=8,
∴∠ABD=∠P,
∵∠PAC=∠ADB=90°,
∴△ABD∽△CPA,
∴,
∴CP=,
∴BC=CP﹣BP=﹣=;
③当PA=PB时,
如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,
则PF⊥AB,
∴AF=FB=4,
在Rt△OFB中,OB=5,FB=4,∴OF=3,
∴FP=8,
∵∠PAF=∠ABP=∠CBG,∠AFP=∠CGB=90°,
∴△PFB∽△CGB,
∴,
设BG=t,则CG=2t,
∵∠PAF=∠ACG,∠AFP=∠AGC=90°,
∴△APF∽△CAG,
∴,
∴,解得t=,
在Rt△BCG中,BC=t=,
综上所述,当△PAB是等腰三角形时,线段BC的长为8,,,
故答案为:8,,.
11.解:在Rt△AOB中,由tan∠ABO=3,可得OA=3OB,则一次函数y=kx+b中k=±.
∵一次函数y=kx+b(k≠0)的图象过点P(1,1),
∴当k=时,求可得b=;
k=﹣时,求可得b=.
即一次函数的解析式为y=x+或y=﹣x+.
令y=0,则x=﹣2或4,
∴点A的坐标是(﹣2,0)或(4,0).
故答案为:(﹣2,0)或(4,0).
12.解:∵正方形OABC的面积是4,
∴AB=BC=2,∴点B坐标为(﹣2,﹣2),
∴k=4,∴y=,
设R的坐标为(x,),
当R在点B的左边时,S=(﹣)×(﹣x﹣2)=m,
解得x=,∴y=,
当R在点B右边时,S=﹣x×(﹣﹣2)=m,
解得x=,∴y=.
故填空答案:(,)或(,).
13.解:∵tan∠BCE=
∴∠BCE=30°
∴∠B=60°
又∵在Rt△ABD中,AD=3
∴BD=3,AB=6
∵BE=2AE
∴BE=4,AE=2
在Rt△BEC中,BE=4,∠BCE=30°
∴CE=4.
14.解∵关于x的一元二次方程8x2+(m+1)x+m﹣7=0有两个负数根,
∴,
解得m>7.
又∵Δ=(m+1)2﹣4×8(m﹣7)=m2﹣30m+225=(m﹣15)2≥0,
∴实数m的取值范围是m>7.
故答案为 m>7.
15.解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,
过点M作MF⊥DC于点F,
∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
∴2MD=AD=CD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD=MD=,
∴FM=DM×cs30°=,
∴MC==,
∴A′C=MC﹣MA′=﹣1.
故答案为:﹣1.
16.解:BC交y轴于D,如图,设C点坐标为(a,)
解方程组得或,
∴A点坐标为(2,3),B点坐标为(﹣2,﹣3),
设直线BC的解析式为y=kx+b,
把B(﹣2,﹣3)、C(a,)代入得,解得,
∴直线BC的解析式为y=x+﹣3,
当x=0时,y=x+﹣3=﹣3,
∴D点坐标为(0,﹣3)
设直线AC的解析式为y=mx+n,
把A(2,3)、C(a,)代入得,解得,
∴直线AC的解析式为y=﹣x++3,
当x=0时,y=x++3=+3,
∴P点坐标为(0,+3)
∵S△PBC=S△PBD+S△CPD,
∴×2×6+×a×6=20,解得a=,
∴C点坐标为(,).
故答案为:(,).
17.解:∵△ABE≌△CDF≌△PMQ,
∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,
∵△ADE≌△BCG≌△PNR,
∴AE=BG=PN,∠DAE=∠CBG=∠RPN,
∴PM=PN,
∵四边形ABCD是平行四边形,
∴∠DAB=∠DCB=45°,
∴∠MPN=90°,
∴△MPN是等腰直角三角形,
当PM最小时,对角线MN最小,即AE取最小值,
∴当AE⊥BD时,AE取最小值,
过D作DF⊥AB于F,
∵平行四边形ABCD的面积为6,AB=3,
∴DF=2,
∵∠DAB=45°,
∴AF=DF=2,
∴BF=1,
∴BD==,
∴AE===,
∴MN=AE=,
故答案为:.
18.解:如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC交EF于J.
∵四边形ABFT是矩形,
∴AB=FT=4,BF=AT,
∵四边形ABCD是矩形,
∴AB=CD=4,AD=BC=8,∠B=∠D=90°
∴AC===4,
∵∠TFE+∠AEJ=90°,∠DAC+∠AEJ=90°,
∴∠TFE=∠DAC,
∵∠FTE=∠D=90°,
∴△FTE∽△ADC,
∴==,
∴==,
∴TE=2,EF=2,
∴BF=AT=AE﹣ET=3﹣2=1,
设A′N=x,
∵NM垂直平分线段EF,
∴NF=NE,
∴12+(4﹣x)2=32+x2,
∴x=1,
∴FN===,
∴MN===,
故答案为:1,.
19.解:方法一:过点F作FG⊥y轴于点G,
∵S四边形MEFO=S△MEO+S△OEF=+S△OEF,
又∵S四边形MEFO=S梯形MEFG+S△FGO=S梯形MEFG+,
∴S△OEF=S梯形MEFG=S2,
则=,
又∵CF=MG,
∴=,
由=,得:=,
∵OB∥NC,
∴==,
则=,
∴=.
方法二:如图2,过点F作FD⊥BO于点D,EW⊥AO于点W,
∵,
∴=,
∵ME•EW=FN•DF,
∴=,
∴=,
设E点坐标为:(x,my),则F点坐标为:(mx,y),
∴△CEF的面积为:S1=(mx﹣x)(my﹣y)=(m﹣1)2xy,
∵△OEF的面积为:S2=S矩形CNOM﹣S1﹣S△MEO﹣S△FON,
=MC•CN﹣(m﹣1)2xy﹣ME•MO﹣FN•NO,
=mx•my﹣(m﹣1)2xy﹣x•my﹣y•mx,
=m2xy﹣(m﹣1)2xy﹣mxy,
=(m2﹣1)xy,
=(m+1)(m﹣1)xy,
∴==.
故答案为:.
20.解:过点B作BD⊥x轴,
在Rt△BOD中,∵tan∠BOC===,
∴OD=5,
则点B的坐标为(5,﹣2),
把点B的坐标为(5,﹣2)代入反比例函数(k≠0)中,
则﹣2=,即k=﹣10,
∴反比例函数的解析式为y=﹣,
把A(﹣2,m)代入y=﹣中,m=5,
∴A的坐标为(﹣2,5),
把A(﹣2,5)和B(5,﹣2)代入一次函数y=ax+b(a≠0)中,
得:,解得,
则一次函数的解析式为y=﹣x+3.
故答案为:y=﹣x+3.
21.解:过点P作PM⊥BC于M,
∵四边形ABCD是矩形,
∴AD∥BC,∠A=∠ABC=90°,
∴PM⊥AD,
∵PG⊥AD,
∴G,P,M共线,
∴∠GMC=90°,
∴四边形ABMG是矩形,
∴GM=AB=3cm,
∵BE=ED,
∴∠EDB=∠EBD,
∵AD∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠CBD,
∵PF⊥BE,PM⊥BC,
∴PM=PF,
∴PF+PG=PM+PG=GM=3cm.
故答案为:3.
22.解:连接EF,∵E、F分别是矩形ABCD的边AD、BC的中点,
∴AE=DE=6,EF∥AB∥CD,
∴△OEF∽△ONM,
∵MN=AB,
∴△OMN与△OEF的高之比是1:3,
S△OMN+S△OEF=×10×××6+×10××6,
同理:S△REF+S△RGH=×10××2×6+××10××6,
∴S△OMN+S△REF+S△OEF+S△RGH=50.
故答案为:50.
相关试卷
这是一份2022-2023学年中考数学填空压轴题专题训练(一),共11页。
这是一份2021年中考一轮复习数学《方程与不等式填空压轴题》专项突破训练(附答案),共16页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份2021年中考一轮复习数学《数与式填空压轴题》专项突破训练(含答案),共14页。试卷主要包含了若=2,则=等内容,欢迎下载使用。