北师大版八年级下册第三章 图形的平移与旋转3 中心对称备课ppt课件
展开1.理解中心对称的概念;(重点)2.能综合运用变换解决有关问题。(难点)
下面图形,它们有何共同特征:
绕某点旋转180°后能与原图形重合.
观察下列图形的运动,说一说它们有什么共同点.
把一个图形 ,如果它 ,那么就说这两个图形关于这个点 或 ,这个点叫做 . 这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.
绕着某一点旋转180°
1.只有一个对称中心2.旋转角必须是180度3.是两个图形,且旋转后能够重合
例1.下列各组图形中,△A′B′C′与△ABC成中心对称的是( )
自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°.连接旋转前后一组对应点,你发现了什么?再选几组对应点试一试,并与同伴交流.
下图中△A′B′C′与△ABC关于点O是成中心对称,你能从图中找到哪些等量关系?
(1).OA=OA′、OB=OB′、OC=OC′
(2)△ABC≌△A′B′C′
1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(即对称点与对称中心三点共线)
2.中心对称的两个图形是全等形.
中心对称与轴对称有什么区别?又有什么联系?
例2.如图,点O是线段AE的中点, 以点O为对称中心,画出与五边形ABCDE成中心对称的图形.
解:如图,连接BO并延长至B′,使 得OB′=OB ;连接CO并延长至C',使得OC′=OC ;连接DO并延长至D′,使得OD′=OD ; 顺次连接E,B′,C′,D′,A.图形EB′C′D′A就是以点O为对称中心、与五边形ABCDE成中心对称的图形.
观察下图,这些图形有什么共同特征?你还能举出一些类似的图形吗?
把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
注意:中心对称图形是指一个图形.
中心对称与中心对称图形的区别与联系 :
例3.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.
1.如图,在下列图形中,中心对称图形有( )A.1个 B.2个 C.3个 D.4个
2.如下所示的4组图形中,左边数字与右边数字成中心对称的有( ) A.1组 B.2组 C.3组 D.4组
3.下列图形中是中心对称图形而不是轴对称图形的是 ( )A.平行四边形 B.矩形 C.菱形 D.正方形
中心对称的概念:把一个图形绕着某一点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.
中心对称的性质:① 关于中心对称的两个图形是全等形. ② 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ③ 关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
北师大版八年级下册3 中心对称授课ppt课件: 这是一份北师大版八年级下册3 中心对称授课ppt课件,共19页。PPT课件主要包含了引入课题,探究新知,课堂小结,本节课学了哪些知识,布置作业,教材习题36等内容,欢迎下载使用。
初中数学北师大版八年级下册第三章 图形的平移与旋转3 中心对称课文ppt课件: 这是一份初中数学北师大版八年级下册第三章 图形的平移与旋转3 中心对称课文ppt课件,共34页。PPT课件主要包含了情境引入,魔术时间,情境引入2,旋转角为180°,观察与思考,中心对称的概念及性质,知识要点,归纳总结,找一找,中心对称的性质等内容,欢迎下载使用。
初中北师大版3 中心对称教课课件ppt: 这是一份初中北师大版3 中心对称教课课件ppt,共23页。PPT课件主要包含了复习导入,亲爱的同学们,旋转中心,旋转角度,旋转三要素,旋转方向,新知讲解,图3-18,图3-20,做一做等内容,欢迎下载使用。