年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    冀教版六年级数学下册《3-1 认识成正比例关系的量》教案教学设计

    冀教版六年级数学下册《3-1 认识成正比例关系的量》教案教学设计第1页
    冀教版六年级数学下册《3-1 认识成正比例关系的量》教案教学设计第2页
    冀教版六年级数学下册《3-1 认识成正比例关系的量》教案教学设计第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学冀教版正比例、反比例教案及反思

    展开

    这是一份数学冀教版正比例、反比例教案及反思,共15页。教案主要包含了引探准备,引探过程,引探结果,引探实践等内容,欢迎下载使用。
    小学六年级数学下册《成正比例的量》:对比新旧教材,我们不 难发现新教材在保留原来表格的基础上,去除了表格下方的三个小问 题,取而代之的是“体积和高度的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思 维想象的空间,以及创造性的培养。旧教材中的 3 个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量 的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的 是让学生带着这 3 个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化 规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按 照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律, 体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有 3 个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编 写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了 例题,例 1 通过研究圆柱形杯子的体积、底面积与高这三个数量的依存关系,使学生理解正比例的意义。教材不再对研究的过程作详细的 引导和说明,只是提供观察研究的素材与数据,出示关键性的结论, 充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。另
    外,增加了认识正比例关系的图像,例 2 让学生体会正比例图像的特点和作用,加深对正比例的认识。
    教学目标:
    1、结合具体实例,经历认识成正比例的量的过程。
    2、知道正比例的意义,能判断两种量是否成正比例关系,能找出生活中成正比例的实例,并进行交流。
    3、对现实生活中成正比例关系的事物有好奇心,在判断成正比例量的过程中,能进行有条理的思考。
    教学重点:
    根据正比例的意义判断两个相关联的量是不是成正比例关
    系。
    教学难点:
    相关联的量的变化规律
    课前准备:实物投影、小黑板。教学方案:
    一、引探准备
    1、师生谈话,让学生说一说汽车每小时跑多少千米,以及汽车是用什么记
    录跑的路程的,引出里程表。
    师:同学们,随着社会的发展和道路的建设,汽车是越来越多, 我想咱们很多同学都坐过汽车。你们知道汽车每小时行驶多少千米吗?
    学生可能会有不同的意见,学生说的有道理就给与肯定,对超出150 千米的进行安全教育。如:车跑得太快,容易出现问题,高速公
    路上一般限速 120 千米等。
    师:谁知道汽车上用什么记录跑的距离呢? 生:里程表。 (学生给不出,教师介绍。)
    师:汽车有一个装置,是专门记录汽车行驶的路程的。板书:里程表
    设计意图:从学生已有的生活经验交流开始,既能激发学生的参与兴趣,又自然引出里程表。
    2、用课件展示教材上的问题情境,让学生了解情境中的数学信息,并计算出汽车 1 小时行驶多少千米。启发学生解释计算的合理性。
    师:请大家看课件。课件展示汽车 8 点开始出发时和行驶 1 小时后里程表上数字的变化。
    师:从刚才的资料中,你了解到什么情况? 学生可能会说:
    汽车 8 点开始行驶,行驶了 1 小时后,9 点停车,
    汽车行驶时,里程表上的数字是 8724 千米,汽车停止时里程表上的数字是 8814 千米。
    师:你们观察的很仔细!它就是汽车的里程表。根据里程表上的数字,能计算出“汽车 1 小时行了多少千米吗?”怎样算?
    生:用 8814 减去 8724 就是汽车 1 小时行驶的路程。师:谁能说一说为什么这样算?
    生:因为汽车没跑时里程表上是 8724 千米,跑了 1 小时,里程
    表上是 8814 千米,多出来的千米数就是汽车 1 小时跑的路程。
    师:说的真好,请同学们算一算,这辆汽车 1 小时跑了多少千米? 学生口算,教师板书:8814-8724=90(千米)
    设计意图:淡化教材内容,既激发学习兴趣,更有利于学生理解问题,解决问题。
    3、提出(2)的要求师生共同完成。
    师:如果汽车的速度不变那么,汽车 2 小时行驶多少千米? 用多媒体出示空白表格。学生边答,教师边填数。
    师:3 小时行驶了多少千米? 师:4 小时、5 小时、6 小时呢?
    学生的回答,师生共同完成表格。
    设计意图:师生共同完成,生成课程资源,把更多的时间用于新知的学习。
    4、让学生观察表中的数据,说一说发现了什么? 学生可能会说:
    每增加 1 小时,路程就增加 90 千米;
    在这个过程中速度是不变的,都是每小时 90 千米。
    时间越长,所行驶的路程就越长。
    设计意图:在已有经验和知识的背景下,初步感受时间和路程的关系。二、引探过程
    行程问题
    1、提出“写出相对应的路程和时间的比,并求出比值”的要求, 师生共同完成。
    师:现在请大家写出相对应的路程和时间的比,并求出比值。师生共同完成,板书结果:
    设计意图:师生共同完成简单计算,有利于节约时间。2、观察写出的比和求出的比值,交流发现了什么?
    教师说明:90 既是比值,又是速度,然后得出比值都是 90 的结果。
    师:我们以前学过路程、时间和速度的数量关系式:速度×时间
    =路程。根据刚才写出的比和比值,还可以写出一个关于路程、时间和速度的关系式。谁来说说是什么?
    学 生 说 , 教 师 板 书 : (比值一定) 设计意图:建立知识空间的联系,为认识正比例作准备。
    3、在教师的启发下,由学生归纳出路程、时间和速度的关系式: 路程/时间=速度(一定)
    师:这个关系式中,什么量是变化的,什么量是不变的?
    生:在这个关系式中路程和时间是变化的,速度是永远不变的。师:速度永远不变,就是说速度是一定的。
    在关系式后面写出一定。
    设计意图:在教师指导下,学生自主总结数量关系式,为认识正比例的定义打基础。
    4、提出“议一议”的问题,鼓励学生用自己的语言说明。结合行程问题,教师参照教材上的表述介绍路程和时间这两种量成正比例。
    师:谁来说说在速度一定的情况下,路程和时间有什么关系? 学生可能会说:
    速度一定,时间越长,行驶的路程越长。
    路程随着时间按比例扩大。
    路程是时间的倍数。
    师:在行程问题中,路程随着时间的变化而变化,时间增加,路程也就随着增长;反之时间减少,路程也就随着缩小。而且,路程与时间的比值一定也就是速度一定。我们说路程和时间这两种量成正比例。这就是我们今天要学习的新知识:正比例。
    设计意图:在学生进一步认识路程、时间、速度变化规律的基础上,教师介绍成正比例的量,使学生初步建立正比例的概念。
    板书课题:正比例。
    购物问题
    1、教师说明生活中有不少类似的问题,并出示买笔问题。让学生自主计算,然后师生共同完成填表。
    师:在行程问题中,当速度一定时,路程与时间成正比例。生活中还有很多类似的问题,比如:购物问题。
    请大家看多媒体,多媒体出示:
    师:买一支自动笔 1.6 元,请同学们算一算买 2 支、3 支、5 支、6 支、7 支、8 支各花多少钱?
    学生计算完后,指名说计算结果,教师填在表格中。得出下表:
    设计意图:教师启发性的话语,既使学生体会数学与生活的密切联系,又对活动目的进行渗透。
    2、让学生观察表中的数据,说一说发现了什么?鼓励学生,写

    总价、数量和单价的关系式:总价/数量=单价(一定) 师:观察表中数据,你发现了什么规律?
    学生可能会说:
    买自动笔的数量越多,花的钱就越多。
    单价一定,也就是花的钱数和买自动笔支数比值一定。
    买自动笔的数量越少,花的钱就越少。
    花的钱数和买的数量是成比例的量。
    师:说得很好。那你能像路程问题一样写出一个式子表示总价、数量和单价之间的关系吗?试一试!
    学生自主尝试,然后指名交流,教师板书:
    设计意图:在学生自主计算和观察的基础上,自主总结关系式, 获得积极的学习经验。
    3、提出“议一议”的问题,花的钱数和买自动笔的数量这两种量成正比例吗?为什么?
    让学生判断并得出:花的钱数与买笔的数量这两种量成正比例。学生可能会说:
    是正比例。因为自动笔的单价一定,所以购买的数量越多,所花的钱数越多;反之购买的数量越少,所花的钱数越少。
    师:谁能用一句话说出总价和数量的关系呢?
    单价一定,买笔的总价和买自动笔的数量成正比例。
    设计意图:判断是否成正比例的过程,既是对已有知识的进一步深化,又为认识正比例关系提供经验。
    4、提出:分析两个例子,你发现它们有什么共同点?给学生充分发言的机会。
    师:请同学们分析一下上面的两个例子和数量关系式,你们发现它们有什么共同点?
    学生可能会说:
    在行程问题中,速度一定,路程随着时间的变化而变化,时
    间越长,路程越长;反之,时间越短,路程也就越短。在购物问题中, 单价一定,总价随着数量的变化而变化,数量越多,总价就越多;反之,数量越少,总价也就越少。
    它们都是有两个量变化,一个量不变。
    都是两个变化量的比值不变。
    第(2)、(3)如说法没有,教师可启发或参与交流。
    设计意图:分析归纳课例的共同点,是由个别到一般的概括过程。5、教师参照教材概括正比例关系。然后让学生看书。
    师:“像上面两个问题中,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。它们的关系叫做正比例关系。这段话在数学书的第 19 页请大家打开书,看书。
    读一读,并想一想判断两种量是否成正比例关系,需要哪些条件?给学生一点时间让其认真阅读教材。
    设计意图:在学生充分感知的基础上,教师进行规范性总结,完成正比例的认识过程。
    6、提出:成正比例关系的量需要具备哪几个条件?给学生充分发现的机会。
    师:我们已经知道什么叫做成正比例关系的量。谁来说一说两个成正比例关系的量需要具备哪几个条件?
    学生可能会说:
    这两个量的比值一定。
    一个量扩大,另一个也按比例扩大,一个量缩小,另一个量也按比例缩小。
    这两种量是关联的。
    一个量扩大,另一个量也成倍数增加。
    设计意图:变换方式理解正比例的定义,有利于应用知识解决问题。
    三、引探结果
    让学生看试一试中的题,先自己判断并和同学交流,然后指名回答。重点指导学生用正比例的定义进行判断。第(3)题只是要学生说出“每月支出的钱数越多(少),剩下的钱数就越少(多),所以不成正比例”或说出“每月支出的钱数和剩下的钱数不是相除的关系” 即可。
    师:下面请同学们看试一试,谁能判断一下题中的两种量是不是成正比例,并说明理由。先同桌互相说一说。
    给学生一点同桌讨论的时间,然后指名回答。教师进行及时提问。如:
    生:飞机飞行的速度不变,飞行的路程和时间成正比例。师:谁能用自己的话说明理由呢?
    生 1:飞机飞行的速度不变,就是飞行距离与飞行时间的比值一定,那么,飞行时间越长,飞行距离也就越远。所以,飞行路程和飞行时间成正比例。
    生 2:飞机飞行的速度不变,飞行的时间越长,飞行的路程也越
    远。而
    且按比例扩大。(也可能说成成倍数增加)
    师:第二个事例,谁来说一说你是怎样判断的?
    生:每千克苹果的价钱一定,就是苹果的单价移动,付出的钱越多,买的苹果就越多。所以,付出的钱数和购买苹果的数量成比例。
    师:第三个问题,每月支出的钱数和剩下的钱数是否成正比例? 生:每月收入一定,每月支出的钱数和剩下的钱数不成正比例。师:为什么?每月收入一定,支出的钱数和剩下的钱数也是有关
    系的,为什么不成比例?谁来解释一下? 学生可能会有不同说法:
    虽然,它们是相关的量,但“每月的收入”不是“支出的钱数” 与“剩下的钱数”的比值。
    支出的钱数和剩下的钱数不是相除的关系。它们的关系是: 每月收入-支出钱数=剩余的钱数。
    学生说得有道理就给与肯定。
    师:同学们说的很好,看来判断两个量是不是成正比例关系,只看有关系还不行,关键要看这两个量相除的商是不是一定。
    设计意图:“学以致用”是数学学习的最终目的,在学生运用所学的知识进行判断的同时,锻炼学生的语言表达能力,学会用所学的知识理解生活中的事物。
    四、引探实践
    练一练。先让学生自己读题,再交流,说明判断结果和理由。
    给学生用不同表述进行判断的机会。
    师:我们生活中像这样的相关联的量还有很多。请大家看练一练, 看表中有哪两种相关的量?判断表中相关联的两种量成正比例吗? 要说明判断理由。
    指名回答,学生可能有不同说法。师总结答案:
    时间和生产量
    这两种量成正比例,因为生产量和对应生产时间的比值一定。
    设计意图:考查学生能否用正比例的定义判断两种量是否能成正比例。
    教学总结:
    本节课你收获了什么?
    教学板书:认识正比例关系的量
    教学课后反思:
    正比例的教学,是在孩子们掌握了比例的意义和基本性质的基础上进行教学的,着重使孩子们理解正比例的意义。正、反比例知识,
    内容抽象,孩子们难以接受。学好正比例是学习反比例的基础。因此在实际教学中,我注意了以下几点:
    1、联系生活,从生活中引入:
    数学来源于生活,又服务于生活。关注孩子们已有的生活经验和兴趣,首先让学生从已有知识中寻找相关联的两个量,然后通过呈现现实生活中的三个素材路程、速度,总价、数量,工作总量、工作时间这两个相关联的量引入新课,使抽象的数学知识具有丰富的现实背景,为孩子们的数学学习提供了生动活泼、主动的材料与环境。
    2、在观察中思考
    本课教学中,我注意把思考贯穿教学的全过程,让孩子们通过观察两个相关联的量,思考他们之间的特征,初步渗透正比例的概念。这样的教学,让所有孩子们在观察中思考、在思考中探索、在探索中获得新知,提高了学习的效率。
    3、在合作中感悟
    新的数学课程标准提倡:引导孩子们以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体” 的思想,在引导孩子们初步认识了两个相关联的量后,敢于放手让孩子们采取小组合作的方式自学,在小组里进行合作探究,做到:孩子们自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。
    4、在练习中巩固提升
    为了及时巩固新知识,完成了练一练习题后,又设计了两道加深
    题,让孩子们在巩固本节课知识的同时,学会通过研究会判断,同时孩子们的思维也得到了提高;最后引导孩子们自己对知识进行梳理, 培养孩子们的归纳能力,使孩子们进一步掌握了正比例的意义。
    教学资料包:
    一、判断下面每题中的两种量是不是成正比例,要说明判断理由。1、轮船行驶的速度一定,也就是行驶的路程和时间。()
    2、每小时织布的米数一定,织布总米数和时间。()
    3、每小时看书的页数一定,看书总页数和时间。()
    4、小明跳高的高度和他的身高。()
    5、幼儿园的阿姨分给每个小朋友 5 块糖,小朋友的人数和需要糖的总块数。()
    答案:
    如(1)题:●轮船行驶的速度一定,也就是行驶的路程除以时间的商一定,所以行驶的路程和时间成正比例。●轮船行驶的速度一定,那么行驶的路程越快,需要的时间就越多,而且是按比例增加, 所以行驶的路程和时间成正比例。
    第(4)题中小明跳高的高度和他的身高没有关系,所以不成比例。第(5)题幼儿园的阿姨分给每个小朋友 5 块糖,就是每人得到的
    糖块数
    一定,那么,小朋友越多,需要的糖块就越多,而且成倍数增加。所以小朋友的人数和需要糖的总块数成正比例。
    二、先自己填表,再判断并用语言描述葡萄的质量和箱数的正比
    例关系。
    箱数(箱)
    2
    3
    4
    5
    数量(千克)
    24
    36
    48
    60
    师:同学们请看下图,每箱葡萄 12 千克,请先完成表格,再判断葡萄的质量和箱数是否成正比例的关系。
    学生自主填表,独立思考。交流填的结果。
    师:葡萄的质量和箱数成正比例吗?谁来说一说为什么?
    生:成正比例。因为每箱葡萄 12 千克就是葡萄的质量除以箱数的商。
    设计意图:正比例关系的巩固练习。

    相关教案

    六年级下数学教学反思成正比的例的量_人教新课标:

    这是一份六年级下数学教学反思成正比的例的量_人教新课标,共1页。

    六年级下数学教案认识成正比例的量_苏教版:

    这是一份六年级下数学教案认识成正比例的量_苏教版,共4页。教案主要包含了教学例1,教学“试一试”,抽象表达正比例的意义,巩固练习,全课小结等内容,欢迎下载使用。

    小学数学冀教版六年级下册正比例、反比例教案:

    这是一份小学数学冀教版六年级下册正比例、反比例教案,共2页。

    数学口算宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map