初中数学苏科版九年级下册第5章 二次函数综合与测试单元测试课时作业
展开学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )
1.已知二次函数,则其二次项系数,一次项系数,常数项分别是( )
A.,, B.,,
C.,, D.,,
2.不在抛物线上的一个点是( )
3.设一元二次方程的两根分别为、,且,则、满足( )
4.将抛物线向上平移个单位,再向左平移个单位,所得抛物线的表达式为( )
5.抛物线的顶点坐标是( )
6.对于二次函数,下列说法正确的是( )
A.当时,随的增大而增大 B.图象的顶点坐标为
C.当时,有最大值 D.图象与轴有两个交点
7.已知二次函数中,当时,,且的平方等于与的乘积,则函数值有( )
8.二次函数的图象如图所示,下列结论:①;②;③;④抛物线与轴的另一个交点为.其中正确的结论有( )个.
9.某商品的进价为每件元,现在的售价为每件元,每星期可卖出件.市场调查反映:如果每件售价每涨元(售价每件不能高于元),那么每星期少卖件.设每件售价为元(为非负整数),则若要使每星期的利润最大且每星期的销量较大,应为多少元?( )
10.已知二次函数的图象如图所示,给出以下四个结论:①;②;③;④,其中所有正确结论的序号是( )
二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )
11.将二次函数的图象向右平移个单位,再向下平移个单位后,所得图象的函数表达式是________.
12.二次函数,当________时有最________值,这个值为________.
13.抛物线顶点为,与轴交于,则抛物线解析式为________.
14.若二次函数与轴的两个交点为则的值为________.
15.已知以为自变量的二次函数的图象经过原点,则的值是________.
16.向空中发射一枚炮弹,经秒后的高度为米,且时间与高度的关系为.若此炮弹在第秒与第秒时的高度相等,当炮弹所在高度最高时是第________秒.
17.若将抛物线 向左平移个单位长度,再向下平移个单位长度,所得的抛物线为,则________.
18.二次函数部分对应值可列表如下:
则一元二次方程正根的范围是________.
19.如图,是二次函数的图象的一部分,对称轴是直线.①;②;③不等式的解集是;④若,是抛物线上的两点,则.上述四个判断中正确的是________(填正确结论的序号).
20.如图,抛物线过,,轴于点,四边形为正方形,点在线段上,点在此抛物线上,且在直线的左侧,则正方形的边长为________.
三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )
21.如图,直线和抛物线都经过,.
求的值和抛物线的解析式;
写出抛物线的顶点坐标;
求不等式的解集.(观察图象,直接写出解集)
22.为了改善小区环境,某小区决定要在一块一边靠墙(墙的最大可用长度为米)的空地上修建一个矩形绿化带,绿化带一边靠墙,另三边用总长为米的栅栏围住(如图).若设绿化带的边长为米,绿化带的面积为平方米.
求与之间的函数关系式及自变量的的取值范围.
栅栏为多少米时,花圃的面积最大?最大面积为多少?
23.如图,抛物线与轴交于点,点,与轴交于点,点是该抛物线的顶点,连接,.
直接写出点、的坐标;
求的面积;
点是抛物线上的一动点,若的面积是面积的,求点的坐标.
24.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线表示该产品每千克生产成本(单位:元)与产量(单位:)之间的函数关系;线段表示每千克的销售价(单位:元)与产量(单位:)之间的函数关系.
请解释图中点的横坐标、纵坐标的实际意义.
求线段所表示的与之间的函数表达式.
当时,销售该产品获得的利润与产量的关系式是________;
当时,销售该产品获得的利润与产量的关系式是________;
总之,当产量为________时,获得的利润最大,最大利润是________.
25.如图,已知二次函数的图象与轴交于、两点(点在点
的左侧),与轴交于点,且,顶点为.
求二次函数的解析式;
点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;
探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说明理由.
26.为了美化环境,学校准备在如图所示的矩形空地上进行绿化,规划在中间的一块四边形上种花,其余的四块三角形上铺设草坪,要求,已知米,米,设米,种花的面积为平方米,草坪面积平方米.
分别求和与之间的函数关系式(不要求写出自变量的取值范围);
当的长为多少米时,种花的面积为平方米?
若种花每平方米需元,铺设草坪每平方米需元,现设计要求种花的面积不大于平方米,设学校所需费用(元),求与之间的函数关系式,并求出学校所需费用的最大值.
答案
1.D
2.D
3.B
4.A
5.D
6.C
7.A
8.B
9.B
10.A
11.
12.大
13..
14.
15.
16.
17.
18.
19.①④
20.
21.解:将代入
得
将,
代入得
∴
∴
由,知
,即,
顶点坐标为
22.解:由题意得:,
自变量的取值范围是:;
∵,
∴当时,有最大值平方米,
即栅栏为米时,花圃的面积最大,最大面积为平方米.
23.解:当,则,
故,
,
故;∵点,点,
∴,
∴;∵的面积是面积的,
∴,
∵,
∴点纵坐标为或,
当点纵坐标为,则,
解得:,,
此时点坐标为:或,
当点纵坐标为,则,
解得:,,
此时点坐标为:或,
综上所述:点的坐标为:、、、.
24.;,,.
25.解:∵,
∴,
∴,
解得分
∴二次函数的解析式为;,
设直线的解析式为,
则有
解得
∴直线的解析式为
∵轴,,
∴点的坐标为
;线段上存在点,,使为等腰三角形
,,
①当时,,
解得,(舍去)
此时
②当时,,
解得,(舍去),
此时
③当时,
解得,此时.
26.解:根据题意,,
;根据题意,知,即,
解得:,,
故当的长为米或米时种花的面积为平方米;设总费用为元,
则,
由知当或时,,
在中,当时,随的增大而增大,当时,随的增大而减小,
∴当时,取得最大值,最大值,
当时,取得最大值,最大值,
∴学校所需费用的最大值为元.A.
B.
C.
D.
A.
B.
C.,
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.最大值
B.最小值
C.最大值
D.最小值
A.
B.
C.
D.
A.
B.
C.
D.
A.②④
B.②③④
C.①②④
D.①④
初中数学苏科版九年级下册第5章 二次函数综合与测试单元测试课后练习题: 这是一份初中数学苏科版九年级下册第5章 二次函数综合与测试单元测试课后练习题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020-2021学年第5章 二次函数综合与测试单元测试课后测评: 这是一份2020-2021学年第5章 二次函数综合与测试单元测试课后测评,共12页。试卷主要包含了 选择题, 填空题, 解答题等内容,欢迎下载使用。
初中数学苏科版九年级下册第5章 二次函数综合与测试单元测试测试题: 这是一份初中数学苏科版九年级下册第5章 二次函数综合与测试单元测试测试题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。